Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T23:58:51.922Z Has data issue: false hasContentIssue false

Photoelectrochemical evaluation of anatase TiO2 polycrystalline aggregation layers with different crystalline orientations

Published online by Cambridge University Press:  31 January 2011

Mamiko Kawakita
Affiliation:
Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan; and Nano Ceramics Center, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
Jin Kawakita*
Affiliation:
Advanced Photovoltaics Center, NIMS, 1-2-1 Sengen, Tsukuba 305-0047, Japan; and World Premier International Research Center Initiative on Materials anoarchitectonics, NIMS, 1-2-1 Sengen, Tsukuba 305-0047, Japan
Yoshio Sakka
Affiliation:
Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan; Nano Ceramics Center, NIMS, 1-2-1 Sengen, Tsukuba 305-0047, Japan; and World Premier International Research Center Initiative on Materials Nanoarchitectonics, NIMS, 1-2-1 Sengen, Tsukuba 305-0047, Japan
Tadashi Shinohara
Affiliation:
Materials Reliability Center, NIMS, 1-2-1 Sengen, Tsukuba 305-0047, Japan
*
a)Address all correspondence to this author. e-mail: KAWAKITA.Jin@nims.go.jp
Get access

Abstract

In order to evaluate the characteristics of photocatalysts such as TiO2, it is important to separately estimate the oxidation and reduction reaction rates, since the overall reaction rate is limited by the rate-determining step. In this study, photoelectrochemical techniques were applied to thin films of crystalline oriented anatase TiO2 with polycrystalline aggregations deposited on the transparent conductive oxide (TCO) glass substrate, fabricated by the electrophoretic deposition (EPD) in a strong magnetic field. The influence of the plane orientation on the photocatalytic reaction rates was discovered for both oxidation and reduction with respect to current through the electrochemical measurements. The maximum photocurrent for the (001) plane orientation is three times higher than that for the (100) plane orientation, and is comparable with that of the random orientation. The rate of the anodic reaction determines the rate of the overall photocatalytic reaction, therefore affecting the photopotential.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fujishima, A., Zhang, X., Tryk, D.A.TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515 (2008)CrossRefGoogle Scholar
2.Linsebigler, A.L., Lu, G., Yates, J.T.Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735 (1995)CrossRefGoogle Scholar
3.Hagfeldt, A., Grätzel, M.Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49 (1995)CrossRefGoogle Scholar
4.Morris Hotsenpiller, P.A., Bolt, J.D., Farneth, W.E., Lowekamp, J.B., Rohrer, G.S.Orientation dependence of photochemical reactions on TiO2 surfaces. J. Phys. Chem. B 102, 3216 (1998)CrossRefGoogle Scholar
5.Lowekamp, J.B., Rohrer, G.S., Morris Hotsenpiller, P.A., Bolt, J.D., Farneth, W.E.Anisotropic photochemical reactivity of bulk TiO2 crystals. J. Phys. Chem. B 102, 7323 (1998)CrossRefGoogle Scholar
6.Yamamoto, Y., Nakajima, K., Ohsawa, T., Matsumoto, Y., Koinuma, H.Preparation of atomically smooth TiO2 single crystal surfaces and their photochemical property. Jpn. J. Appl. Phys. 44, L511 (2005)CrossRefGoogle Scholar
7.Ohno, T., Sarukawa, K., Matsumura, M.Crtstal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J. Chem. 26, 1167 (2002)CrossRefGoogle Scholar
8.Taguchi, T., Saito, Y., Sarukawa, K., Ohno, T., Matsumura, M.Formation of new crystal faces on TiO2 particles by treatment with aqueous HF solution or hot sulfuric acid. New J. Chem. 27, 1304 (2003)CrossRefGoogle Scholar
9.Hengerer, R., Kavan, L., Krtil, P., Grätzel, M.Orientation dependence of charge-transfer processes on TiO2 (anatase) single crystals. J. Electrochem. Soc. 147, 1467 (2000)CrossRefGoogle Scholar
10.Kawakita, M., Uchikoshi, T., Kawakita, J., Sakka, Y.Preparation of crystalline-oriented titania photoelectrodes on ITO glasses from 2-propanol-2,4-pentanedione solvent by electrophoretic deposition in a strong magnetic field. J. Am. Ceram. Soc. 92, 984 (2009)CrossRefGoogle Scholar
11.Uchikoshi, T., Suzuki, T.S., Iimura, S., Tang, F., Sakka, Y.Control of crystalline texture in polycrystalline TiO2 (anatase) by electrophoretic deposition in a strong magnetic field. J. Eur. Ceram. Soc. 26, 559 (2006)CrossRefGoogle Scholar
12.Kawakita, J., Kuroda, S., Shionohara, T., Suzuki, M., Sodeoka, S.Fabrication of nano-sized oxide composite coatings and photo-electric conversion/electron storage characteristics. Surf. Coat. Technol. 202, 4028 (2008)CrossRefGoogle Scholar
13.Kawakita, M., Kawakita, J., Uchikoshi, T., Sakka, Y.Photoanode characteristics of dye-sensitized solar cell containing TiO2 layers with different crystalline orientations. J. Mater. Res. 24, 1417 (2009)CrossRefGoogle Scholar
14.Kawakita, M., Kawakita, J., Sakka, Y., Shionohara, T.Orientation dependence of semiconductor properties in anatase TiO2 polycrystalline aggregates. J. Electrochem. Soc. 157, H65 (2010)CrossRefGoogle Scholar