Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T01:30:06.178Z Has data issue: false hasContentIssue false

Plasticity in the nanoscale Cu/Nb single-crystal multilayers as revealed by synchrotron Laue x-ray microdiffraction

Published online by Cambridge University Press:  04 January 2012

Arief Suriadi Budiman*
Affiliation:
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Seung-Min Han
Affiliation:
Department of Materials Science & Engineering, Stanford University, Stanford, California 94305; and Graduate School of Energy, Environment and Water Sustainability, Korea Advanced Institute of Science & Technology, Daejeon 305-701, Republic of Korea
Nan Li
Affiliation:
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Qiang-Min Wei
Affiliation:
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Patricia Dickerson
Affiliation:
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Nobumichi Tamura
Affiliation:
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720
Martin Kunz
Affiliation:
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720
Amit Misra
Affiliation:
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
*
a)Address all correspondence to this author. e-mail: suriadi@alumni.stanford.edu
Get access

Abstract

There is much interest in the recent years in the nanoscale metallic multilayered composite materials due to their unusual mechanical properties, such as very high flow strength and stable plastic flow to large strains. These unique mechanical properties have been proposed to result from the interface-dominated plasticity mechanisms in nanoscale composite materials. Studying how the dislocation configurations and densities evolve during deformation will be crucial in understanding the yield, work hardening, and recovery mechanisms in the nanolayered materials. In an effort to shed light on these topics, uniaxial compression experiments on nanoscale Cu/Nb single-crystal multilayer pillars using ex situ synchrotron-based Laue x-ray microdiffraction technique were conducted. Using this approach, we studied the nanoscale Cu/Nb multilayer pillars before and after uniaxial compression to about 14% of plastic strain and found significant Laue peak broadening in the Cu phase, which indicates storage of statistically stored dislocations, while no significant Laue peak broadening was observed in the Nb phase in the nanoscale multilayers. These observations suggest that at 14% plastic strain of the nanolayered pillars, the deformation was dominated by plasticity in the Cu nanolayers and elasticity or possibly a zero net plasticity (due to the possibility of annihilation of interface dislocations) in the Nb nanolayers.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Misra, A., Hirth, J.P., and Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).Google Scholar
2.Grimes, R.W., Konings, R.J.M., and Edwards, L.: Greater tolerance for nuclear materials. Nat. Mater. 7, 683 (2008).Google Scholar
3.Demkowicz, M.J., Hoagland, R.G., and Hirth, J.P.: Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys. Rev. Lett. 100, 136102 (2008).Google Scholar
4.Misra, A., Demkowicz, M.J., Wang, J., and Hoagland, R. G.: The multiscale modeling of plastic deformation in metallic nanolayered composites. JOM 60(4), 39 (2008).CrossRefGoogle Scholar
5.Hoagland, R.G., Hirth, J.P., and Misra, A.: On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos. Mag. 86, 3537 (2006).Google Scholar
6.Anderson, P.M., Bingert, J.F., Misra, A., and Hirth, J.P.: Rolling textures in nanoscale Cu/Nb multilayers. Acta Mater. 51, 6059 (2003).CrossRefGoogle Scholar
7.Nyilas, K., Misra, A., and Ungar, T.: Micro-strains in cold rolled Cu-Nb nanolayered composites determined by x-ray line profile analysis. Acta Mater. 54, 751 (2006).Google Scholar
8.Aydiner, C.C., Brown, D.W., Mara, N., Almer, J., and Misra, A.: In situ x-ray investigation of freestanding nanoscale Cu-Nb multilayers under tensile load. Appl. Phys. Lett. 94, 031906 (2009).Google Scholar
9.Aydiner, C.C., Brown, D.W., Misra, A., Mara, N., Wang, Y-C., Wall, J.J., and Almer, J.: Residual strain and texture in free-standing nanoscale Cu-Nb multilayers. J. Appl. Phys. 102, 083514 (2007).Google Scholar
10.Budiman, A.S., Li, N., Baldwin, J.K., Xiong, J., Luo, H., Wei, Q., Tamura, N., Kunz, M., Chen, K., and Misra, A.: Growth and structural characterization of epitaxial Cu/Nb multilayers. Thin Solid Films 519, 4137 (2011).Google Scholar
11.Tamura, N., MacDowell, A.A., Spolenak, R., Valek, B.C., Bravman, J.C., Brown, W.L., Celestre, R.S., Padmore, H.A., Batterman, B.W., and Patel, J.R.: Scanning x-ray microdiffraction with submicrometer white beam for strain/stress and orientation mapping in thin films. J. Synchroton Radiat. 10, 137 (2003).Google Scholar
12.Swygenhoven, H.V., Schmitt, B., Derlet, P.M., Petegem, S.V., Cervellino, A., Budrovic, Z., Brandstetter, S., Bollhalder, A., and Schild, M.: Following peak profiles during elastic and plastic deformation: A synchrotron-based technique. Rev. Sci. Instrum. 77, 013902 (2006).Google Scholar
13.Budiman, A.S., Han, S.M., Greer, J.R., Tamura, N., Patel, J.R., and Nix, W.D.: A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron x-ray microdiffraction. Acta Mater. 56, 602 (2008).Google Scholar
14.Maass, R., Petegem, S.V., Swygenhoven, H.V., Derlet, P.M., Volkert, C.A., and Grolimund, D.: Time-resolved Laue diffraction of deforming micropillars. Phys. Rev. Lett. 99, 145505 (2007).Google Scholar
15.Valek, B.C.: X-ray microdiffraction studies of mechanical behavior and electromigration in thin film structures. PhD dissertation, Stanford University, Palo Alto, CA (2003).Google Scholar
16.Budiman, A.S.: Probing plasticity at small scales: From electromigration in interconnects to dislocation hardening processes in crystals. PhD dissertation, Stanford University, Palo Alto, CA (2008).Google Scholar
17.Kirchlechner, C., Kiener, D., Motz, C., Labat, S., Vaxelaire, N., Perroud, O., Micha, J.S., Ulrich, O., Thomas, O., Dehm, G., and Keckes, J.: Dislocation storage in single slip-oriented Cu micro-tensile samples: New insights via x-ray microdiffraction. Philos. Mag. 91(7–9), 1256 (2011).Google Scholar
18.Maass, R., Grolimund, D., Van Petegem, S., Willimann, M., Jensen, M., Swygenhoven, H., Lehnert, T., Gijs, M.A., Volkert, C.A., Lilleodden, E.T., and Schwaiger, R.: Defect structure in micropillars using x-ray microdiffraction. Appl. Phys. Lett. 89, 151905 (2006).Google Scholar
19.Lee, G., Kim, J.Y., Budiman, A.S., Tamura, N., Kunz, M., Chen, K., Burek, M.J., Greer, J.R., and Tsui, T.Y.: Fabrication, structure and mechanical properties of indium nanopillars. Acta Mater. 58, 1361 (2010).Google Scholar
20.Burek, M.J., Budiman, A.S., Jahed, Z., Tamura, N., Kunz, M., Jin, S., Han, S.M., Lee, G., Zamecnik, C., and Tsui, T.Y.: Fabrication, microstructure and mechanical properties of tin nanostructures. Mater. Sci. Eng., A 528, 5822 (2011).CrossRefGoogle Scholar
21.Burek, M.J., Jin, S., Leung, M.C., Jahed, Z., Wu, J., Budiman, A.S., Tamura, N., Kunz, M., and Tsui, T.Y.: Grain boundary effects on the mechanical properties of bismuth nanostructures. Acta Mater. 59, 4709 (2011).Google Scholar
22.Maass, R., Van Petegem, S., Ma, D., Zimmermann, J., Grolimund, D., Roters, F., Van Swygenhoven, H., and Raabe, D.: Smaller is stronger: The effect of strain hardening. Acta Mater. 57, 5996 (2009).Google Scholar
23.Maass, R., Van Petegem, S., Grolimund, D., Van Swygenhoven, H., Kiener, D., and Dehm, G.: Crystal rotation in Cu single crystal micropillars: In situ Laue and electron backscatter diffraction. Appl. Phys. Lett. 92, 071905 (2008).Google Scholar
24.Budiman, A.S., Nix, W.D., Tamura, N., Valek, B.C., Gadre, K., Maiz, J., Spolenak, R., and Patel, J.R.: Crystal plasticity in Cu damascene interconnect lines undergoing electromigration as revealed by synchrotron x-ray microdiffraction. Appl. Phys. Lett. 88, 233515 (2006).Google Scholar
25.Budiman, A.S., Besser, P., Hau-Riege, C.S., Marathe, A., Joo, Y.C., Tamura, N., Patel, J.R., and Nix, W.D.: Electromigration-induced plasticity: Texture correlation and implications for reliability assessment. J. Electron. Mater. 38, 379 (2009).Google Scholar
26.Budiman, A.S.: The evolution of microstructure in copper interconnects during electromigration, in Electromigration in Thin Films and Electronic Devices: Materials and Reliability, edited by Kim, C.U. (Woodhead Publishing Limited, Cambridge, England, 2011), p. 135.CrossRefGoogle Scholar
27.Budiman, A.S., Hau-Riege, C.S., Baek, W.C., Lor, C., Huang, A., Kim, H.S., Neubauer, G., Pak, J., Besser, P., and Nix, W.D.: Electromigration-induced plastic deformation in Cu interconnects: Effects on current density exponent, n, and implications for EM reliability assessment. J. Electron. Mater. 39, 2483 (2010).CrossRefGoogle Scholar
28.Volkert, C.A. and Lilleodden, E.T.: Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86, 5567 (2006).Google Scholar
29.Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).Google Scholar
30.Tamura, N., Kunz, M., Chen, K., Celestre, R.S., MacDowell, A.A., and Warwick, T.: A superbend x-ray microdiffraction beamline at the advanced light source. Mater. Sci. Eng.,A 524, 28 (2009).CrossRefGoogle Scholar
31.MacDowell, A.A., Celestre, R.S., Tamura, N., Spolenak, R., Valek, B.C., Brown, W.L., Bravman, J.C., Padmore, H.A., Batterman, B.W., and Patel, J.R.: Submicron x-ray diffraction. Nucl. Instrum. Methods Phys. Res. Sect. A 467468, 936 (2001).Google Scholar
32.Anderson, P.M., Foecke, T., and Hazzledine, P.M.: Dislocation-based deformation mechanisms in metallic nanolaminates. MRS Bull. 24, 27 (1999).Google Scholar
33.Phillips, M.A., Clemens, B.M., and Nix, W.D.: A model for dislocation behavior during deformation of Al/Al3Sc (fcc/L12) metallic multilayers. Acta Mater. 51, 3157 (2003).Google Scholar
34.Misra, A., Hirth, J.P., Hoagland, R.G., Embury, J.D., and Kung, H.: Dislocation mechanisms and symmetric slip in rolled nano-scale metallic multilayers. Acta Mater. 52, 2387 (2004).Google Scholar
35.Cahn, R.W.: Recrystallization of single crystals after plastic bending. J. Inst. Met. 86, 121 (1949).Google Scholar
36.Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metall. 1, 153 (1953).Google Scholar