Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-11T00:47:00.822Z Has data issue: false hasContentIssue false

Polarity-induced changes in the nanoindentation response of GaAs

Published online by Cambridge University Press:  03 March 2011

E. Le Bourhis*
Affiliation:
Université de Poitiers, Laboratoire de Métallurgie Physique, UMR 6630 CNRS, SP2MI-Téléport 2, B.P. 30179, 86962 Chasseneuil Cedex, France
G. Patriarche
Affiliation:
Laboratoire de Photonique et de Nanostructures, UPR 20 CNRS, 91460 Marcoussis, France
L. Largeau
Affiliation:
Laboratoire de Photonique et de Nanostructures, UPR 20 CNRS, 91460 Marcoussis, France
J.P. Rivière
Affiliation:
Laboratoire de Physique des Solides et de Cristallogénèse, UMR 8635 CNRS, 92195 Meudon Cedex, France
*
a) Address all correspondence to this author. e-mail: eric.le.bourhis@univ-poitiers.fr
Get access

Abstract

We studied the polarity-induced changes in the nanoindentation response of GaAs{111}. The nanoindentations were made under a large range of loads (Fmax between 0.2 mN and 50 mN) at room temperature on {111} faces of A (Ga) or B (As) character. The loading–unloading curves were compared first, with special attention addressed to pop-in events and hardness values (reported previously for microindentation). Transmission electron microscopy was used to observe the nanoindentation structures generated at the two polar surfaces. The size of the dense plastic zone generated around the indent site was found to increase linearly with √Fmax and similarly for both polar surfaces. The indentation rosettes possess a threefold symmetry with arms developed along the <110> directions parallel to the surface. Sizes were found to be very close for both polar surfaces and the entire load range. For an A-polar face, the rosette arms are constituted by two arms: a long arm (LA, α dislocations) and a short arm (β dislocations). At the B surface, only the LA (β dislocations) are formed. Furthermore, microtwinning was observed only for an A-polar face, similar to previous observations of anisotropic microtwinning at GaAs(001) surfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Patriarche, G. and Le Bourhis Philos, E.Mag A 80 2899 (2000).CrossRefGoogle Scholar
2.Patriarche, G., Mériadec, C., Le Roux, G., Deparis, C., Sagnes, I., Harmand, J.C. and Glas, F., Appl. Surf. Sci. 164 15 (2000).CrossRefGoogle Scholar
3.Hirsch, P.B., Pirouz, P., Roberts, S.G. and Warren, P.D., Philos. Mag. A 52 759 (1985).CrossRefGoogle Scholar
4.Rivière, A., Sieber, B. and Rivière, J.P., Microsc. Microanal. Microstruct. 2 503 (1991).CrossRefGoogle Scholar
5.Gerberich, W.W., Nelson, J.C., Lilleoden, E.T., Anderson, P. and Wyrobek, J.T., Acta. Mater. 44 3585 (1996).CrossRefGoogle Scholar
6.Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V. and Munroe, P., Appl. Phys. Lett. 78 3235 (2001).CrossRefGoogle Scholar
7.Le Bourhis, E., Rivière, J.P. and Zozime, A., J. Mater. Sci. 31 6571 (1996).CrossRefGoogle Scholar
8.Minor, A.M., Lilleodden, E.T., Stach, E.A. and Morris, J.W., J. Electron. Mater. 31 958 (2002).CrossRefGoogle Scholar
9.Le Bourhis, E. and Patriarche, G., Philos. Mag. Lett. 79 805 (1999).CrossRefGoogle Scholar
10.Le Bourhis, E. and Patriarche, G., Eur. Phys. J. Appl. Phys. 12 31 (2000).CrossRefGoogle Scholar
11.Holt, D.B., J. Mater. Sci. 23 1131 (1988).CrossRefGoogle Scholar
12.Largeau, L., Patriarche, G., Le Bourhis, E., Rivière, A. and Rivière, J.P., Philos. Mag. 83 1653 (2003).CrossRefGoogle Scholar
13.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 1564 (1992).CrossRefGoogle Scholar
14.George, A. and Rabier, J., Rev. Phys. Appl. 22 941 (1987).CrossRefGoogle Scholar
15.Hainsworth, S.V., Whitebread, A.J. and Page, T.F. in Plastic Deformation of Ceramics, edited by Bradt, R.C., Brookes, C.A., and Toutbort, J.L. (Plenum, New York, 1996), p 173.Google Scholar
16.Le Bourhis, E. and Patriarche, G., Phys. Status Solidi (a) 179 153 (2000).3.0.CO;2-Z>CrossRefGoogle Scholar
17.Syed Asif, S.A. and Pethica, J.B., Philos. Mag. A 76 1105 (1997).CrossRefGoogle Scholar
18.Mann, A.B. and Pethica, J.B., Philos. Mag. A 79 577 (1999).CrossRefGoogle Scholar
19.Page, T.F., Oliver, W.C. and McHargue, C.J., J. Mater. Res. 7 450 (1992).CrossRefGoogle Scholar
20.Lorenz, D., Zeckzer, A., Hilpert, U., Grau, P., Johansen, H. and Leipner, H.S., Phys. Rev. B 67 172101 (2003).CrossRefGoogle Scholar
21.Chaudhri, M.M., Acta Mater. 46 3047 (1998).CrossRefGoogle Scholar
22.Largeau, L., Patriarche, G. and Le Bourhis, E., J. Mater. Sci. Lett. 21 401 (2002).CrossRefGoogle Scholar
23.Yonenaga, I., J. Phys III 7 1435 (1997).Google Scholar
24.Johnson, K.L., in Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985).CrossRefGoogle Scholar
25.Kramer, D., Huang, H., Kriese, M., Robach, J., Nelson, J., Wright, A., Bahr, D. and Gerberich, W.W., Acta. Mater. 47 333 (1999).CrossRefGoogle Scholar
26.Chiu, Y.L. and Ngan, A.W.H., Acta Mater. 50 2677 (2002).CrossRefGoogle Scholar
27.Yonenaga, I. and Suzuki, T., Philos. Mag. Lett. 82 535 (2002).CrossRefGoogle Scholar
28.Levade, C. and Vanderschaeve, G., Phys. Status Solidi (a) 171 83 (1999).3.0.CO;2-C>CrossRefGoogle Scholar
29.Lloyd, S.J., Molina-Aldareguia, J.M. and Clegg, W.J., J. Mater. Res. 16 3347 (2001).CrossRefGoogle Scholar
30.Ning, X.J., Perez, T. and Pirouz, P., Philos. Mag. A 72 837 (1995).CrossRefGoogle Scholar