Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T22:10:08.389Z Has data issue: false hasContentIssue false

Portable solid rapid quantitative detection for Cu2+ ions: Tuning the detection range limits of fluorescent conducting polymer dots

Published online by Cambridge University Press:  27 March 2017

Shizhen Zhao
Affiliation:
Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, School of Chemistry and Chemical Industry, China West Normal University, Nanchong 637002, China
Siwei Yang
Affiliation:
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Shanghai 20050, China
Xun Song
Affiliation:
Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, School of Chemistry and Chemical Industry, China West Normal University, Nanchong 637002, China
Gang Wang
Affiliation:
Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo, Zhejiang 315211, China
Yucheng Yang
Affiliation:
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Shanghai 20050, China
Fang Liao*
Affiliation:
Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, School of Chemistry and Chemical Industry, China West Normal University, Nanchong 637002, China
Guqiao Ding
Affiliation:
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Shanghai 20050, China
*
a) Address all correspondence to this author. e-mail: liaofang407@163.com
Get access

Abstract

In this work, o-phenylenediamine-m-phenylenediamine copolymer dots (omCPs) with designed surface groups are synthesized and characterized. Here, we explored a simple, rapid semiquantitative detection system for Cu2+ with a wide detection range (5–7 orders of magnitude) based on the fluorescence in the solid state of omCPs and their tunable detection limits. The construction and application of the rapid semiquantitative detection system for Cu2+ are developed and demonstrated for the practical applications. What’s more, the detection limit can be modulated easily by adjusting the surface groups of these dots through the monomer dose control before the co-polymerization. Moreover, we demonstrated that this new technological approach is suitable for the semiquantitative determination of other ions pollutants (i.e., Na+, K+, Cu2+, Pb2+, Hg2+, and NO2 ) in environmental water.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

These authors contributed equally to this work.

Contributing Editor: Tao Xie

References

REFERENCES

Manez, R.M. and Sancenon, F.: Fluorgenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 103, 44194476 (2003).CrossRefGoogle Scholar
Liu, S., Tian, J.Q., Wang, L., Zhang, Y.W., Qin, X.Y., Luo, Y.L., Asiri, A.M., AlYoubi, A.O., and Sun, X.P.: Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater. 24, 20372041 (2012).Google Scholar
Chebrolua, L.D., Thurakkala, S., and Balaramana, H.S.: Selective and dual naked eye detection of Cu2+ and Hg2+ ions using a simple quinoline–carbaldehyde chemosensor. Sens. Actuators, B 204, 480488 (2014).Google Scholar
Avirah, R.R., Jyothish, K., and Ramaiah, D.: Dual-mode semisquaraine-based sensor for selective detection of Hg2+ in a micellar medium. Org. Lett. 9, 121124 (2006).Google Scholar
Chen, X.Q., Zhou, Y., Peng, X.J., and Yoon, J.Y.: Fluorescent and colorimetric probes for detection of thiols. Chem. Soc. Rev. 39, 21202135 (2010).CrossRefGoogle ScholarPubMed
Wood, T.E. and Thompson, A.: Advances in the chemistry of dipyrrins and their complexes. Chem. Rev. 107, 18311861 (2007).Google Scholar
Ulrich, G., Ziessel, R., and Harriman, A.: The chemistry of fluorescent bodipy dyes: Versatility unsurpassed. Angew. Chem., Int. Ed. 47, 11841201 (2008).CrossRefGoogle ScholarPubMed
Sun, J., Yang, S., Wang, Z., Shen, H., Xu, T., Sun, L., Li, H., Chen, W., Jiang, X., Ding, G., Kang, Z., Xie, X., and Jiang, M.: Ultra-high quantum yield of graphene quantum dots: Aromatic-nitrogen doping and photoluminescence mechanism. Part. Part. Syst. Charact. 32, 434440 (2015).CrossRefGoogle Scholar
Taki, M., Iyoshi, S., Ojida, A., Hamachi, I., and Yamamoto, Y.: Development of highly sensitive fluorescent probes for detection of intracellular copper(I) in living systems. J. Am. Chem. Soc. 132, 59385939 (2010).Google Scholar
Wu, C.S., Oo, M.K.K., and Fan, X.D.: Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes. ACS Nano 4, 58975904 (2010).CrossRefGoogle ScholarPubMed
Yang, P., Zhao, Y., Lu, Y., Xu, Q.Z., Xu, X.W., Dong, L., and Yu, S.H.: Phenol formaldehyde resin nanoparticles loaded with CdTe quantum dots: A fluorescence resonance energy transfer probe for optical visual detection of copper(II) ions. ACS Nano 5, 21472154 (2011).CrossRefGoogle ScholarPubMed
Wang, X.Q., Ye, G., and Wang, X.G.: Hydrogel diffraction gratings functionalized with crown ether for heavy metal ion detection. Sens. Actuators, B 193, 413419 (2014).Google Scholar
Sun, H.J., Gao, N., Wu, L., Ren, J.S., Wei, W.L., and Qu, X.G.: Highly photoluminescent amino-functionalized graphene quantum dots used for sensing copper ions. Chem.–Eur. J. 19, 1336213368 (2013).CrossRefGoogle ScholarPubMed
Yang, X. and Wang, E.K.: A nanoparticle autocatalytic sensor for Ag+ and Cu2+ ions in aqueous solution with high sensitivity and selectivity and its application in test paper. Anal. Chem. 83, 50055011 (2011).CrossRefGoogle ScholarPubMed
Chen, G.H., Chen, W.Y., Yen, Y.C., Wang, C.W., Chang, H.T., and Chen, C.F.: Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal. Chem. 86, 68436849 (2014).Google Scholar
Wang, M., Liu, X.M., Lu, H.Z., Wang, H.M., and Qin, Z.H.: Highly selective and reversible chemosensor for Pd2+ detected by fluorescence, colorimetry, and test paper. ACS Appl. Mater. Interfaces 7, 12841289 (2015).CrossRefGoogle ScholarPubMed
Chaiyoa, S., Siangprohb, W., Apiluxc, A., and Chailapakul, O.: Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions. Anal. Chim. Acta 86, 7583 (2015).Google Scholar
Tian, J.Q., Liu, Q., Asiri, A.M., Youbi, A.O., and Sun, X.P.: Ultrathin graphitic carbon nitride nanosheet: A highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+ . Anal. Chem. 85, 55955599 (2013).Google Scholar
Liu, L. and Lin, H.W.: Paper-based colorimetric array test strip for selective and semiquantitative multi-ion analysis: Simultaneous detection of Hg2+, Ag+, and Cu2+ . Anal. Chem. 86, 88298834 (2014).Google Scholar
Zong, C.H., Ai, K.L., Zhang, G., Li, H.W., and Lu, L.H.: Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+ . Anal. Chem. 83, 31263132 (2011).CrossRefGoogle ScholarPubMed
Vedamalai, M., Periasamy, A.P., Wang, C.W., Tseng, Y.T., Ho, L.C., Shih, C.C., and Chang, H.T.: Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale 6, 1311913125 (2014).CrossRefGoogle ScholarPubMed
Gholivand, M.B. and Rashidi Nassab, H.: Highly selective adsorptive cathodic stripping voltammetric determination of uranium in the presence of pyromellitic acid. Electroanalysis 17, 719723 (2005).Google Scholar
Struss, A., Pasini, P., Ensor, C.M., Raut, N., and Daunert, S.: Paper strip whole cell biosensors: A portable test for the semiquantitative detection of bacterial quorum signaling molecules. Anal. Chem. 82, 44574463 (2010).CrossRefGoogle ScholarPubMed
Pei, H.M., Zhu, S.Y., Yang, M.G., Kong, R.M., Zheng, Y.Q., and Qu, F.L.: Graphene oxide quantum dots@silver core–shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosens. Bioelectron. 74, 909914 (2015).CrossRefGoogle Scholar
Liu, S., Tian, J.Q., Wang, L., Luo, Y.L., Zhai, J.F., and Sun, X.P.: Preparation of photoluminescent carbon nitride dots from CCl4 and 1,2-ethylenediamine: A heat-treatment-based strategy. J. Mater. Chem. 21, 1172611729 (2011).CrossRefGoogle Scholar
Lu, W.B., Qin, X.Y., Liu, S., Chang, G.H., Zhang, Y.W., Luo, Y.L., Asiri, A.M., Al-Youbi, A.O., and Sun, X.P.: Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal. Chem. 84, 53515357 (2012).CrossRefGoogle ScholarPubMed
Qu, F.L., Yang, M.H., and Rasooly, A.: Dual signal amplification electrochemical biosensor for monitoring the activity and inhibition of the Alzheimer’s related protease β-secretase. Anal. Chem. 88, 1055910565 (2016).CrossRefGoogle ScholarPubMed
Kong, R.M., Fu, T., Sun, N.N., Qu, F.L., Zhang, S.F., and Zhang, X.B.: Pyrophosphate-regulated Zn2+-dependent DNAzyme activity: An amplified fluorescence sensing strategy for alkaline phosphatase. Biosens. Bioelectron. 50, 351355 (2013).Google Scholar
Qu, F.L., Pei, H.M., Kong, R.M., Zhu, S.Y., and Xia, L.: Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets. Talanta 165, 136142 (2016).CrossRefGoogle Scholar
Zhao, Y., Zheng, Y.Q., Kong, R.M., Xia, L., and Qu, F.L.: Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silicapoly(acrylic acid) brushes for protein biomarker detection. Biosens. Bioelectron. 75, 383388 (2016).Google Scholar
Song, X., Sun, H.Y., Yang, S.W., Zhao, S.Z., and Liao, F.: Synthesis of photoluminescent o-phenylenediamine-m-phenylenediamine copolymer nanospheres: An effective fluorescent sensing platform for selective and sensitive detection of chromium(VI) ion. J. Lumin. 169, 186190 (2016).CrossRefGoogle Scholar
Li, L.L., Liu, K.P., Yang, G.H., Wang, C.M., Zhang, J.R., and Zhu, J.J.: Fabrication of graphene–quantum dots composites for sensitive electrogenerated chemiluminescence immunosensing. Adv. Funct. Mater. 21, 869878 (2011).Google Scholar
Liao, F., Song, X., Yang, S.W., Hu, C.Y., He, L., Yan, S., and Ding, G.Q.: Photoinduced electron transfer of poly(ophenylenediamine)–Rhodamine B copolymer dots: Application in ultrasensitive detection of nitrite in vivo . J. Mater. Chem. A 3, 75687574 (2015).Google Scholar
Yang, S.W., Ye, C.C., Song, X., He, L., and Liao, F.: Theoretical calculation based synthesis of a poly(p-phenylenediamine)–Fe3O4 composite: A magnetically recyclable photocatalyst with high selectivity for acid dyes. RSC Adv. 4, 5481054818 (2014).CrossRefGoogle Scholar
Li, X.B., Yang, S.W., Sun, J., He, P., Xu, X.G., and Ding, G.Q.: Tungsten oxide nanowire-reduced graphene oxide aerogel for high-efficiency visible light photocatalysis. Carbon 78, 3848 (2014).Google Scholar
Song, X., Yang, S.W., He, L., Yan, S., and Liao, F.: Ultra-flyweight hydrophobic poly(m-phenylenediamine) aerogel with microspherical shell structures as a high-performance selective adsorbent for oil contamination. RSC Adv. 4, 4900049005 (2014).Google Scholar
He, P., Sun, J., Tian, S.Y., Yang, S.W., Ding, S.J., Ding, G.Q., Xie, X.M., and Jiang, M.H.: Processable aqueous dispersions of graphene stabilized by graphene quantum dots. Chem. Mater. 27, 218226 (2015).Google Scholar
Dai, Y.Q., Long, H., Wang, X.T., Wang, Y.M., Gu, Q., Jiang, W., Wang, Y.C., Li, C.C., Zeng, T.Y.H., Sun, Y.M., and Zeng, J.: Versatile graphene quantum dots with tunable nitrogen doping. Part. Part. Syst. Charact. 31, 597604 (2014).CrossRefGoogle Scholar
Wang, Z.F., Liao, F., Yang, S.W., and Guo, T.T.: Synthesis of poly(o-phenylenediamine)/ferric oxide composites with rose-like hierarchical microstructures. Mater. Lett. 67, 121123 (2012).Google Scholar
Yano, J. and Nagaoka, T.: Ion pairing between dissolved poly(o-phenylenediamine) and halogenide ions. J. Electroanal. Chem. 410, 213217 (1996).Google Scholar
Jeroschewski, P., Steuckart, C., and Kuhl, M.: An Amperometric microsensor for the determination of H2S in aquatic environments. Anal. Chem. 68, 43514357 (1996).CrossRefGoogle Scholar
Yang, S.W. and Liao, F.: Characterization and morphology control of poly(p-phenylenediamine) microstructures in different Ph. Nano 6, 597601 (2011).CrossRefGoogle Scholar
Yang, S.W. and Liao, F.: Poly(p-phenylenediamine) nanofibers having conjugated structures, a novel, simple and highly selective fluorescent probe for l-cysteine. Synth. Met. 162, 13431347 (2012).Google Scholar
Zhang, T.T., Yang, S.W., Sun, J., Li, X.B., He, L., Yan, S., Kang, X.Y., Hu, C.S., and Liao, F.: Poly(p-phenylenediamine) fluorescent nanosphere: A ultra-sensitive fluorescent probe for caffeine. Synth. Met. 181, 8691 (2013).Google Scholar
Liao, F., Yang, S.W., Li, X.B., Yang, L.J., Xie, Z.H., Hu, C.S., Yan, S., Ren, T.Y., and Liu, Z.D.: Preparation of heteroatom doped poly(o-phenylenediamine) fluorescent nanospheres: Tunable fluorescent spectrum and sensing performance. Synth. Met. 189, 126134 (2014).CrossRefGoogle Scholar
Li, L., Wu, G., Yang, G., Peng, J., Zhao, J., and Zhu, J.: Focusing on luminescent graphene quantum dots: Current status and future perspectives. Nanoscale 5, 40154039 (2013).Google Scholar
Gokhale, R. and Singh, P.: Blue luminescent graphene quantum dots by photochemical stitching of small aromatic molecules: Fluorescent nanoprobes in cellular imaging. Part. Part. Syst. Charact. 31, 433438 (2014).Google Scholar
Yang, S.W., Liu, D., Liao, F., Guo, T.T., Wu, Z.P., and Zhang, T.T.: Synthesis, characterization, morphology control of poly (p-phenylenediamine)-Fe3O4 magnetic micro-composite and their application for the removal of Cr2O7 2− from water. Synth. Met. 162, 23292336 (2012).CrossRefGoogle Scholar
Li, Y., Hu, Y., Zhao, Y., Shi, G.Q., Deng, L.E., Hou, Y.B., and Qu, L.T.: An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 23, 776780 (2011).Google Scholar
Liao, F., Yang, S.W., Li, X.B., Yang, L.J., Xie, Z.H., Hu, C.S., He, L., Kang, X.Y., Song, X., and Ren, T.Y.: Poly(o-phenylenediamine) and benzeneselenol copolymer fluorescent nanorod: An ultra-sensitive fluorescent probe and a fluorescent switch triggered by redox procedure. Synth. Met. 189, 135142 (2014).CrossRefGoogle Scholar
Mao, X.J., Zheng, H.Z., Long, Y.J., Du, J., Hao, J.Y., Wang, L.L., and Zhou, D.B.: Study on the fluorescence characteristics of carbon dots. Spectrochim. Acta, Part A 75, 553557 (2010).Google Scholar
Anilkumar, P., Wang, X., Cao, L., Sahu, S., Liu, J.H., Wang, P., Korch, K., Tackett, K.N., Parenzana, A., and Sun, Y.P.: Toward quantitatively fluorescent carbon-based “quantum” dots. Nanoscale 3, 20232027 (2011).Google Scholar
Yang, S.W., Huang, S.Q., Liu, D., and Liao, F.: Characterization and morphology control of poly(p-phenylenediamine) nanofibers: A novel, simple and highly selective fluorescent probe for thiols. Synth. Met. 162, 22282235 (2012).CrossRefGoogle Scholar
Zhao, Y., Zhang, X.B., Han, Z.X., Qiao, L., Li, C.Y., Jian, L.X., Shen, G.L., and Yu, R.Q.: Highly sensitive and selective colorimetric and off−on fluorescent chemosensor for Cu2+ in aqueous solution and living cells. Anal. Chem. 81, 70227030 (2009).CrossRefGoogle ScholarPubMed
Rahman, M. and Harmon, H.J.: Absorbance change and static quenching of fluorescence of meso-tetra(4-sulfonatophenyl)porphyrin (TPPS) by trinitrotoluene (TNT). Spectrochim. Acta, Part A 65, 901906 (2006).Google Scholar
Zhang, H., Sun, Y., Ye, K., Zhang, P., and Wang, Y.: Oxygen sensing materials based on mesoporous silica MCM-41 and Pt(II)–porphyrin complexes. J. Mater. Chem. 15, 31813186 (2005).CrossRefGoogle Scholar
Cheng, P.P.H., Silvester, D., Wang, G., Kalyuzhny, G., Douglas, A., and Murray, R.W.: Dynamic and static quenching of fluorescence by 1−4 nm diameter gold monolayer-protected clusters. J. Phys. Chem. B 110, 46374644 (2006).Google Scholar
Zhu, S.J., Zhang, J.H., Tang, S.J., Qiao, C.Y., Wang, L., Wang, H.Y., Liu, X., Li, B., Li, Y.F., Yu, W.L., Wang, X.F., Sun, H.C., and Yang, B.: Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications. Adv. Funct. Mater. 22, 47324740 (2012).Google Scholar
Supplementary material: File

Zhao supplementary material

Figures S1-S8 and Tables S1-S2

Download Zhao supplementary material(File)
File 805.2 KB