Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T00:42:58.920Z Has data issue: false hasContentIssue false

Possible evidence for overcoordination at semiconductor grain boundaries

Published online by Cambridge University Press:  31 January 2011

W. Krakow
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, New York 10598
A. A. Levi
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, New York 10598
S. T. Pantelides
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, New York 10598
Get access

Abstract

The structure of a near coincidence Ge tilt grain boundary, containing a step, has been derived from a high resolution electron micrograph. There are two possible interpretations of portions of this interface, one of which is the existence of a sheet of fivefold coordinated atoms between the Σ = 19 and Σ = 27 coincidence misorientations. This finding may represent the first experimental evidence that overcoordinated atoms are present at semiconductor grain boundaries free of a screw dislocation.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hornstra, J., J. Phys. Chem. Solids 5, 129 (1958).CrossRefGoogle Scholar
2Hornstra, J., Physica 25, 409 (1959).CrossRefGoogle Scholar
3Hornstra, J., Physica 26, 198 (1960).CrossRefGoogle Scholar
4 See, e.g.,Johnson, N. M., Biegelsen, D. K., and Moyer, M. D., Appl. Phys. Lett. 40, 882 (1982).CrossRefGoogle Scholar
5 See, e.g.,Street, R.A. and Biegelsen, D. K., in The Physics of Hydrogenated Amorphous Silicon II, edited by Joannopoulos, J. D. and Lucovsky, G. L. (Academic Press, New York, 1984), Vol. 21, p. 195.CrossRefGoogle Scholar
6Pantelides, S.T., Phys. Rev. Lett. 57, 2979 (1986).CrossRefGoogle Scholar
7Kluge, M. D., Ray, J. R., and Rahman, A., Phys. Rev. B 36, 4234 (1987); R. Biswas, G. S. Grest, and C. M. Soukoulis, Phys. Rev. B 36, 7437(1987).CrossRefGoogle Scholar
8Payne, M. C., Bristowe, P. D., and Joannopoulos, J. D., Phys. Rev. Lett. 58, 1348 (1987).CrossRefGoogle Scholar
9Daum, W., Lbach, H., and Muller, J.E., Phys. Rev. Lett. 59, 1593 (1987).CrossRefGoogle Scholar
10Desseaux, J., Renault, A., and Bourret, A., Phil. Mag. 35, 357 (1977).CrossRefGoogle Scholar
11Krivanek, O. L., Isoda, S., and Kobayashi, K., Phil. Mag. 36, 931 (1977).CrossRefGoogle Scholar
12Bourret, A. and Desseaux, J., Phil. Mag. 9, 419 (1979).CrossRefGoogle Scholar
13Ichinose, H. and Ishida, Y., Phil. Mag. 43, 1253 (1981).CrossRefGoogle Scholar
14Ishida, Y., Ichinose, H., Mori, M., and Hashimoto, M., Trans. Jpn. Inst. Metals 24, 349 (1983).CrossRefGoogle Scholar
15Krakow, W.Wetzel, J.T., and Smith, D.A., Phil. Mag. 53, 739 (1986).CrossRefGoogle Scholar
16Krakow, W. and Smith, D.A., J. Mater. Res. 1, 47 (1986).CrossRefGoogle Scholar
17Vitek, V., Sutton, A.P., Smith, D.A., and Pond, R.C., Grain Boundary Structure and Kinetics (ASM, Metals Park, OH, 1980), p. 115.Google Scholar
18Wetzel, J.T., Levi, A. A., and Smith, D.A., Proc. of 4th Int. Symp. on Grain Boundary Structure and Related Phenomena, Suppl. Trans. Jpn. Inst. Metals 27, 1061 (1986).Google Scholar
19Vaudin, M. D., Cunningham, B., and Ast, D. G., Scripta Metall. 17, 191 (1983).CrossRefGoogle Scholar
20Bourret, A. and Bacmann, J. J., Proc. of 4th Int. Symp. on Grain Boundary Structure and Related Phenomena, Suppl. Trans. Jpn. Inst. Metals 27, 125 (1986).Google Scholar
21Elgat, Z. and Carter, C. B., Ultramicros. 18, 313 (1985).CrossRefGoogle Scholar
22Krakow, W., Diffusion Processes in High Technology Materials, Proc. ASM Symp., Cincinnati, OH, October 1116, 1987 (Trans. Tech. Publications, edited by Gupta, D., Romig, A. D., Jr., and Dayananda, M. A., 1988), p.151.Google Scholar
23Bourret, A., Desseaux, J., and Renault, A., Phil. Mag. 45, 1 (1982).CrossRefGoogle Scholar
24D'Anterroches, C. and Bourret, A., Phil. Mag. 49, 783 (1984).CrossRefGoogle Scholar
25Vitek, V. and Minoshi, Y., Proc. Int. Symp. Interface Migration and Control of Microstructure, in conjunction with ASM Metals Congress and TMS/AIME Fall Meeting, Detroit, MI (ASM, Metals Park, OH, 1984), p. 39.Google Scholar