Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T00:33:48.443Z Has data issue: false hasContentIssue false

Potential energy states and mechanical properties of thermally cycled binary glasses

Published online by Cambridge University Press:  30 April 2019

Nikolai V. Priezjev*
Affiliation:
Department of Mechanical and Materials Engineering, Wright State University, Dayton, Ohio 45435, USA; and National Research University Higher School of Economics, Moscow 101000, Russia
*
a)Address all correspondence to this author. e-mail: nikolai.priezjev@wright.edu
Get access

Abstract

The influence of repeated thermal cycling on mechanical properties, structural relaxation, and evolution of the potential energy in binary glasses is investigated using molecular dynamics simulations. The authors consider a binary mixture annealed with different cooling rates and then exposed to one thousand thermal cycles at constant pressure. It is found that during the first few hundred transient cycles, the potential energy minima after each cycle gradually decrease and the structural relaxation proceeds through collective, irreversible displacements of atoms. With increasing cycle number, the amplitudes of the volume and potential energy oscillations are significantly reduced, and the potential energy minima saturate to a constant value that depends on the thermal cycling amplitude and the initial cooling rate. In the steady state, the glasses thermally expand and contract but most of the atoms return to their cages after each cycle, similar to limit cycles found in periodically driven amorphous materials. The results of tensile tests demonstrate that the elastic modulus and the yielding peak, evaluated after the thermal treatment, acquire maximum values at a particular thermal cycling amplitude, which coincides with the minimum of the potential energy.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liu, C. and Maass, R.: Elastic fluctuations and structural heterogeneities in metallic glasses. Adv. Funct. Mater. 28, 1800388 (2018).10.1002/adfm.201800388CrossRefGoogle Scholar
Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).10.1016/0001-6160(79)90055-5CrossRefGoogle Scholar
Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).10.1016/0001-6160(77)90232-2CrossRefGoogle Scholar
Egami, T., Iwashita, T., and Dmowski, W.: Mechanical properties of metallic glasses. Metals 3, 77 (2013).10.3390/met3010077CrossRefGoogle Scholar
Park, E.S. and Kim, D.H.: Phase separation and enhancement of plasticity in Cu–Zr–Al–Y bulk metallic glasses. Acta Mater. 54, 2597 (2006).10.1016/j.actamat.2005.12.020CrossRefGoogle Scholar
Kim, H-K., Ahn, J-P., Lee, B-J., Park, K-W., and Lee, J-C.: Role of atomic-scale chemical heterogeneities in improving the plasticity of Cu–Zr–Ag bulk amorphous alloys. Acta Mater. 157, 209 (2018).10.1016/j.actamat.2018.07.040CrossRefGoogle Scholar
Sarac, B. and Schroers, J.: Designing tensile ductility in metallic glasses. Nat. Commun. 4, 2158 (2013).10.1038/ncomms3158CrossRefGoogle ScholarPubMed
Ketov, S.V., Sun, Y.H., Nachum, S., Lu, Z., Checchi, A., Beraldin, A.R., Bai, H.Y., Wang, W.H., Louzguine-Luzgin, D.V., Carpenter, M.A., and Greer, A.L.: Rejuvenation of metallic glasses by non-affine thermal strain. Nature 524, 200 (2015).10.1038/nature14674CrossRefGoogle ScholarPubMed
Greer, A.L. and Sun, Y.H.: Stored energy in metallic glasses due to strains within the elastic limit. Philos. Mag. 96, 1643 (2016).10.1080/14786435.2016.1177231CrossRefGoogle Scholar
Song, W., Meng, X., Wu, Y., Cao, D., Wang, H., Liu, X., Wang, X., and Lu, Z.: Improving plasticity of the Zr46Cu46Al8 bulk metallic glass via thermal rejuvenation. Sci. Bull. 63, 840 (2018).10.1016/j.scib.2018.04.021CrossRefGoogle Scholar
Grell, D., Dabrock, F., and Kerscher, E.: Cyclic cryogenic pretreatments influencing the mechanical properties of a bulk glassy Zr-based alloy. Fatigue Fract. Eng. Mater. Struct. 41, 1330 (2018).10.1111/ffe.12777CrossRefGoogle Scholar
Guo, W., Yamada, R., and Saida, J.: Rejuvenation and plasticization of metallic glass by deep cryogenic cycling treatment. Intermetallics 93, 141 (2018).10.1016/j.intermet.2017.11.015CrossRefGoogle Scholar
Ketov, S.V., Trifonov, A.S., Ivanov, Y.P., Churyumov, A.Y., Lubenchenko, A.V., Batrakov, A.A., Jiang, J., Louzguine-Luzgin, D.V., Eckert, J., Orava, J., and Greer, A.L.: On cryothermal cycling as a method for inducing structural changes in metallic glasses. NPG Asia Mater. 10, 137 (2018).10.1038/s41427-018-0019-4CrossRefGoogle Scholar
Shang, B., Guan, P., and Barrat, J-L.: Role of thermal expansion heterogeneity in the cryogenic rejuvenation of metallic glasses. J. Phys.: Mater. 1, 015001 (2018).Google Scholar
Utz, M., Debenedetti, P.G., and Stillinger, F.H.: Atomistic simulation of aging and rejuvenation in glasses. Phys. Rev. Lett. 84, 1471 (2000).10.1103/PhysRevLett.84.1471CrossRefGoogle ScholarPubMed
Lacks, D.J. and Osborne, M.J.: Energy landscape picture of overaging and rejuvenation in a sheared glass. Phys. Rev. Lett. 93, 255501 (2004).10.1103/PhysRevLett.93.255501CrossRefGoogle Scholar
Priezjev, N.V.: Heterogeneous relaxation dynamics in amorphous materials under cyclic loading. Phys. Rev. E 87, 052302 (2013).10.1103/PhysRevE.87.052302CrossRefGoogle ScholarPubMed
Fiocco, D., Foffi, G., and Sastry, S.: Oscillatory athermal quasistatic deformation of a model glass. Phys. Rev. E 88, 020301(R) (2013).10.1103/PhysRevE.88.020301CrossRefGoogle ScholarPubMed
Regev, I., Lookman, T., and Reichhardt, C.: Onset of irreversibility and chaos in amorphous solids under periodic shear. Phys. Rev. E 88, 062401 (2013).10.1103/PhysRevE.88.062401CrossRefGoogle ScholarPubMed
Priezjev, N.V.: Dynamical heterogeneity in periodically deformed polymer glasses. Phys. Rev. E 89, 012601 (2014).10.1103/PhysRevE.89.012601CrossRefGoogle ScholarPubMed
Regev, I., Weber, J., Reichhardt, C., Dahmen, K.A., and Lookman, T.: Reversibility and criticality in amorphous solids. Nat. Commun. 6, 8805 (2015).10.1038/ncomms9805CrossRefGoogle ScholarPubMed
Priezjev, N.V.: Reversible plastic events during oscillatory deformation of amorphous solids. Phys. Rev. E 93, 013001 (2016).10.1103/PhysRevE.93.013001CrossRefGoogle ScholarPubMed
Priezjev, N.V.: Nonaffine rearrangements of atoms in deformed and quiescent binary glasses. Phys. Rev. E 94, 023004 (2016).10.1103/PhysRevE.94.023004CrossRefGoogle ScholarPubMed
Leishangthem, P., Parmar, A.D.S., and Sastry, S.: The yielding transition in amorphous solids under oscillatory shear deformation. Nat. Commun. 8, 14653 (2017).10.1038/ncomms14653CrossRefGoogle ScholarPubMed
Priezjev, N.V.: Collective nonaffine displacements in amorphous materials during large-amplitude oscillatory shear. Phys. Rev. E 95, 023002 (2017).10.1103/PhysRevE.95.023002CrossRefGoogle ScholarPubMed
Fan, M., Wang, M., Zhang, K., Liu, Y., Schroers, J., Shattuck, M.D., and O’Hern, C.S.: The effects of cooling rate on particle rearrangement statistics: Rapidly cooled glasses are more ductile and less reversible. Phys. Rev. E 95, 022611 (2017).10.1103/PhysRevE.95.022611CrossRefGoogle ScholarPubMed
Priezjev, N.V.: Molecular dynamics simulations of the mechanical annealing process in metallic glasses: Effects of strain amplitude and temperature. J. Non-Cryst. Solids 479, 42 (2018).10.1016/j.jnoncrysol.2017.10.009CrossRefGoogle Scholar
Priezjev, N.V.: The yielding transition in periodically sheared binary glasses at finite temperature. Comput. Mater. Sci. 150, 162 (2018).10.1016/j.commatsci.2018.03.062CrossRefGoogle Scholar
Blank-Burian, M. and Heuer, A.: Shearing small glass-forming systems: A potential energy landscape perspective. Phys. Rev. E 98, 033002 (2018).10.1103/PhysRevE.98.033002CrossRefGoogle Scholar
Priezjev, N.V.: The effect of cryogenic thermal cycling on aging, rejuvenation, and mechanical properties of metallic glasses. J. Non-Cryst. Solids 503–504, 131 (2019).10.1016/j.jnoncrysol.2018.09.041CrossRefGoogle Scholar
Kob, W. and Andersen, H.C.: Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture: The van Hove correlation function. Phys. Rev. E 51, 4626 (1995).10.1103/PhysRevE.51.4626CrossRefGoogle ScholarPubMed
Weber, T.A. and Stillinger, F.H.: Local order and structural transitions in amorphous metal-metalloid alloys. Phys. Rev. B 31, 1954 (1985).10.1103/PhysRevB.31.1954CrossRefGoogle ScholarPubMed
Allen, M.P. and Tildesley, D.J.: Computer Simulation of Liquids (Clarendon, Oxford, 1987).Google Scholar
Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).10.1006/jcph.1995.1039CrossRefGoogle Scholar
Ediger, M.D. and Harrowell, P.: Perspective: Supercooled liquids and glasses. J. Chem. Phys. 137, 080901 (2012).10.1063/1.4747326CrossRefGoogle ScholarPubMed
Kob, W. and Barrat, J-L.: Fluctuations, response and aging dynamics in a simple glass-forming liquid out of equilibrium. Eur. Phys. J. B 13, 319 (2000).10.1007/s100510050038CrossRefGoogle Scholar
Falk, M.L. and Langer, J.S.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192 (1998).10.1103/PhysRevE.57.7192CrossRefGoogle Scholar
Priezjev, N.V.: Slow relaxation dynamics in binary glasses during stress-controlled, tension-compression cyclic loading. Comput. Mater. Sci. 153, 235 (2018).10.1016/j.commatsci.2018.06.044CrossRefGoogle Scholar
Keim, N.C., Paulsen, J., Zeravcic, Z., Sastry, S., and Nagel, S.R.: Memory formation in matter. arXiv:1810.08587 (2018).10.1103/RevModPhys.91.035002CrossRefGoogle Scholar
Supplementary material: File

Priezjev supplementary material

Priezjev supplementary material 1

Download Priezjev supplementary material(File)
File 1 MB