Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T01:27:45.778Z Has data issue: false hasContentIssue false

Preparation and microwave absorption properties of Ni/rGO/EP composite foam

Published online by Cambridge University Press:  11 June 2020

Zixuan Wang
Affiliation:
Faculty of Materials Science and Engineering, Liaoning Key Laboratory of Advanced Polymer Matrix Composites, Shenyang Aerospace University, Shenyang110136, China
Qi Yu*
Affiliation:
Faculty of Materials Science and Engineering, Liaoning Key Laboratory of Advanced Polymer Matrix Composites, Shenyang Aerospace University, Shenyang110136, China
Weicheng Nie
Affiliation:
Faculty of Materials Science and Engineering, Liaoning Key Laboratory of Advanced Polymer Matrix Composites, Shenyang Aerospace University, Shenyang110136, China
Ping Chen
Affiliation:
School of Chemical Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, China
*
a)Address all correspondence to this author. e-mail: yuqi1027@126.com
Get access

Abstract

In this study, the Ni/rGO hollow microspheres were synthesized and combined with epoxy foam to prepare structural absorbing materials. The diameter of obtained rGO hollow microspheres loaded with Ni nanoparticles was around 10 μm and the thickness of the spherical wall was about 70 nm. The Ni/rGO/EP composite foam exhibited better microwave absorption properties than that of rGO/EP and Ni/EP composite foam. The minimum reflection loss value (RLmin) could reach −58.23 dB at 8.4 GHz with a thickness of 2.5 mm, and the effective bandwidth with RLmin lower than −10 dB is 2.21 GHz ranging from 7.46 to 9.67 GHz. The porous structure of Ni/rGO hollow microspheres and their filled epoxy foam can refract and absorb the electromagnetic waves repeatedly, which equals to extend the propagation path of microwave, thus, electromagnetic loss capacity was improved obviously.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ni, S.B., Sun, X.L., Wang, X.H., Zhou, G., Yang, F., Wang, J.M., and He, D.Y.: Low temperature synthesis of Fe3O4 micro-spheres and its microwave absorption properties. Mater. Chem. Phys. 124, 353 (2010).CrossRefGoogle Scholar
Yu, Qi., Wang, Z.X., Chen, P., Wang, Q., Wang, Y.Y. and Ma, M.B.: Microwave absorbing and mechanical properties of carbon fiber/bismaleimide composites imbedded with Fe@C/PEK-C nanomembranes. J. Mater. Sci. Mater. Electron. 30, 308 (2019).CrossRefGoogle Scholar
Wang, Y., Zhu, H.Y., Chen, Y.H., Wu, X.M., Zhang, W.Z., Luo, C.Y., and Li, J.H.: Design of hollow ZnFe2O4 microspheres@graphene decorated with TiO2 nanosheets as a high-performance low frequency absorber. Mater. Chem. Phys. 202, 184 (2017).CrossRefGoogle Scholar
Deng, J.L. and Huang, K.: Microwave absorbing properties of MnO2/Ni-Zn ferrite/graphite structural composite. Adv. Mater. Res. 535, 201 (2012).CrossRefGoogle Scholar
Liu, Y., Jian, X.Y., Su, X.L., Luo, F., Xu, J., Wang, J.B., He, X.H., and Qu, Y.H.: Electromagnetic interference shielding and absorption properties of Ti3SiC2/nano Cu/epoxy resin coating. J. Alloy. Compd. 740, 68 (2018).CrossRefGoogle Scholar
Mohammadian, R., Rahmani, S., Seyed Dorraji, M.S., and Hajimiri, I.: Microwave absorption properties of GO nanosheets-BaFe12O19–NiO nanocomposites based on epoxy resin: optimization using Taguchi methodology. J. Mater. Sci. Mater. Electron. 29, 4583 (2018).CrossRefGoogle Scholar
Vovchenko, L.L., Matzui, L.Y., Oliynyk, V.V., and Launetz, V.L.: The effect of filler morphology and distribution on electrical and shielding properties of graphite-epoxy composites. Mol. Cryst. Liq. Cryst. 535, 179 (2011).CrossRefGoogle Scholar
Duan, W.Y., Fan, Z., Wang, H., Zhang, J.Y., Qiao, T.L., and Yina, X.W.: Electromagnetic interference shielding and mechanical properties of Si3N4–SiOC composites fabricated by 3D-printing combined with polymer infiltration and pyrolysis. J. Mater. Res. 32, 1 (2017).CrossRefGoogle Scholar
Bandi, S., Hastak, V., Pavithra, C.L.P., Kashyap, S., Singh, D.K., Luqman, S., Peshwe, D.R., and Srivastav, A.K.: Graphene/chitosan-functionalized iron oxide nanoparticles for biomedical applications. J. Mater. Res. 34, 3389 (2019).CrossRefGoogle Scholar
Tareq, M.S., Zainuddin, S., Woodside, E., and Syed, F.: Investigation of the flexural and thermomechanical properties of nanoclay/graphene reinforced carbon fiber epoxy composites. J. Mater. Res. 34, 3678 (2019).Google Scholar
Chen, T.T., Deng, F., Zhu, J., Chen, C.F., Sun, G.B., Ma, S.L., and Yang, X.J.: Hexagonal and cubic Ni nanocrystals grown on graphene: Phase-controlled synthesis, characterization and their enhanced microwave absorption properties. J. Mater. Chem. 22, 15190 (2012).CrossRefGoogle Scholar
Zhu, Z.T., Sun, X., Li, G.X., Xue, H.R., Guo, H., Fan, X.L., Pan, X.C., and He, J.P.: Microwave-assisted synthesis of graphene–Ni composites with enhanced microwave absorption properties in Ku-band. J. Magn. Magn. Mater. 377, 95 (2015).CrossRefGoogle Scholar
Pang, H.F., Duan, Y.P., Liu, J., and Zhang, B.: Low-temperature synthesis and microwave absorbing properties of Mn3O4–graphene nanocomposite. J. Mater. Res. 33, 1 (2018).CrossRefGoogle Scholar
Lou, H.F., Wang, J.J., Xu, B.C., and Li, Z.G.: Effect of co-doping on intrinsic parameters and absorption properties of micro-nano barium ferrite hollow ceramic microspheres. J. Mater. Sci. Mater. Electron. 26, 3898 (2015).Google Scholar
Lou, X.W., Archer, L.A., and Yang, Z.C.: Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 20, 3987 (2008).CrossRefGoogle Scholar
He, Y.J., Cui, Y.Q., Lu, L.N., Wang, F.Z., and Hu, S.G.: Microwave absorbing mortar using magnetic hollow fly ash microspheres/Fe3O4 composite as absorbent. J. Mater. Civil. Eng. 30, 1 (2018).CrossRefGoogle Scholar
Wang, L.J., Zhang, C., Gong, W., Ji, Y.B., Qin, S.H., and He, L.: Preparation of microcellular epoxy foams through a limited-foaming process: A contradiction with the time–temperature–transformation cure diagram. Adv. Mater. 30, 1703992 (2018).Google ScholarPubMed
Chen, W., Wang, J., Zhang, B., Wu, Q.L., and Su, X.G.: Enhanced electromagnetic interference shielding properties of carbon fiber veil/Fe3O4 nanoparticles/epoxy multiscale composites. Mater. Res. Express 4, 126303 (2017).CrossRefGoogle Scholar
Liu, L.Y., Yang, S., Hu, H.Y., Zhang, T.L., Yuan, Y., Li, Y.B., and He, X.D.: Lightweight and efficient microwave absorbing materials based on Loofah Sponge derived hierarchically porous carbons. ACS Sustain Chem. Eng. 7, 1228 (2019).CrossRefGoogle Scholar
Liu, G.Z., Jiang, W., Sun, D.P., Wang, Y.P., and Li, F.S.: One-pot synthesis of urchin like Ni nanoparticles/RGO composites with extraordinary electromagnetic absorption properties. Appl. Surf. Sci. 314, 523 (2014).CrossRefGoogle Scholar
Xu, K., Ma, W.H., Liu, Y.N., Bai, Y.F., Xue, J.W., Liu, Y., Zhao, G.Z., and Liu, Y.Q.: Broadband and tunable high-performance microwave absorption composites reduced graphene oxide-Ni. J. Mater. Sci. Mater. Electron. 30, 9133 (2019).CrossRefGoogle Scholar
Zhu, Z.T., Sun, X., Li, G.X., Xue, H.R., Guo, H., Fan, X.L., Pan, X.C., and He, J.P.: Microwave-assisted synthesis of graphene-Ni composites with enhanced microwave absorption properties in Ku-band. J. Magn. Magn. Mater. 377, 95 (2015).CrossRefGoogle Scholar
Lan, Z.Q., Zeng, L., Jiong, G., Huang, X.T., Liu, H.Z., Hua, N., and Guo, J.: Synthetical catalysis of nickel and graphene on enhanced hydrogen storage properties of magnesium. Int J Hydrogen Energ 210, 165 (2015).Google Scholar
Wang, Y., Wu, X.X., Zhang, J.W., Liu, H.J., Lv, X.Y., Zhang, M.M., Liu, S.C., and Gong, C.H.: Facile synthesis of Ni/PANI/RGO composites and their excellent electromagnetic wave absorption properties. Synthetic Met. 210, 165 (2015).CrossRefGoogle Scholar
Xu, W., Wang, G.S., and Yin, P.G.: Designed fabrication of reduced graphene oxides/Ni hybrids for effective electromagnetic absorption and shielding. Carbon 139, 759 (2018).CrossRefGoogle Scholar
Pan, H., Xu, M.Z., Qi, Q., and Liu, X.B.: Facile preparation and excellent microwave absorption properties of an RGO/Co0.33Ni.67 lightweight absorber. RSC Adv. 7, 43831 (2017).CrossRefGoogle Scholar
Zhang, Z.L., Lv, Y.Y., Chen, X.Q., Wu, Z., He, Y.Y., Zhang, L., and Zou, Y.H.: Porous flower-like Ni/C composites derived from MOFs toward high-performance electromagnetic wave absorption. J. Magn. Magn. Mater. 487, 165334 (2019).CrossRefGoogle Scholar
Wei, Y., Wang, X.X., Zhang, J.W., Liu, H.J., Lv, X.Y., Zhang, M.M., Liu, S.C., and Gong, C.H.: Facile approach of Ni/C composites from Ni/cellulose composites as broadband microwave absorbing materials. RSC Adv. 7, 31129 (2017).CrossRefGoogle Scholar
Chung, K.T., Sabo, A., and Pica, A.P.: Electrical permittivity and conductivity of carbon black-polyvinyl chloride composites. J. Appl. Phys. 53, 6867 (1982).CrossRefGoogle Scholar
Moon, K.S., Choi, H.D., Lee, A.K., Cho, K.Y., Yoon, H.G., and Suh, K.S.: Dielectric properties of epoxy-dielectrics-carbon black composite for phantom materials at radio frequencies. J. Appl. Polym. Sci. 77, 1294 (2000).3.0.CO;2-E>CrossRefGoogle Scholar
Zeng, Q., Xu, D.W., Chen, P., Yu, Q., Xiong, X.H., Chu, H.R., and Wang, Q.: 3D graphene-Ni microspheres with excellent microwave absorption and corrosion resistance properties. J. Mater. Sci. Mater. Electron. 29, 2421 (2018).CrossRefGoogle Scholar
Shi, X.L., Cao, M.S., Yuan, J., and Fang, X.Y.: Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 95, 163108 (2009).CrossRefGoogle Scholar
Li, H.F., Huang, Y.H., Sun, G.B., Yan, X.Q., Yang, J., Wang, J., and Zhang, Y.: Directed growth and microwave absorption property of crossed ZnO Netlike micro-/nanostructures. J. Phys. Chem. C 114, 10088 (2010).CrossRefGoogle Scholar
Lin, Y., Wang, Q., Gao, S.Y., Yang, H.B., and Wang, L.: Constructing flower-like porous Bi0.9La0.1FeO3 microspheres for excellent electromagnetic wave absorption performances. J. Alloy. Compd. 745, 761 (2018).CrossRefGoogle Scholar
Zhang, H.X., Wang, B.B., Feng, A.L., Zhang, N., Jia, Z.R., Huang, Z.Y., Liu, X.H., and Wu, G.L.: Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers. Compos. Part B-Eng. 167, 690 (2019).CrossRefGoogle Scholar
Gao, X., Wang, Y., Wang, Q.G., Wu, X.M., Zhang, W.Z., and Luo, C.Y.: Facile synthesis of hollow cube-like ZnSnO3 wrapped by nitrogen-doped graphene: As a high-performance and enhanced synergistic microwave absorber. J. Magn. Magn. Mater. 486, 165251 (2019).CrossRefGoogle Scholar
Liu, W., Tan, S.J., Yang, Z.H., and Ji, G.B.: Hollow graphite spheres embedded in porous amorphous carbon matrix as lightweight and low-frequency microwave absorbing material through modulating dielectric loss. Carbon 138, 143 (2018).CrossRefGoogle Scholar
Green, M., Xiang, P., Liu, Z.Q., Murowchick, J., Tan, X.Y., Huang, F.Q., and Chen, X.B.: Microwave absorption of aluminum/hydrogen treated titanium dioxide nanoparticles. J. Materiomics. 5, 133 (2019).CrossRefGoogle Scholar
Green, M., and Chen, X.B.: libRL: A Python library for the characterization of microwave absorption. JOSS. 4, 1868 (2019).CrossRefGoogle Scholar
Zeng, Q., Xiong, X.H., Chen, P., Yu, Q., Wang, Q., Wang, R.C., and Chu, H.R.: Air@rGO€Fe3O4 microspheres with spongy shells: Self-assembly and microwave absorption performance. J. Mater. Chem. C. 4, 10518 (2016).CrossRefGoogle Scholar
Tong, G.X., Liu, Y., Cui, T.T., Li, Y.N., Zhao, Y.T., and Guan, J.G.: Tunable dielectric properties and excellent microwave absorbing properties of elliptical Fe3O4 nanorings. Appl. Phys. Lett. 108, 072905 (2016).CrossRefGoogle Scholar
H., W.S. Jr. and Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).Google Scholar
Wang, L.J., Yang, X., Jiang, T.H., Zhang, C., and He, L.: Cell morphology, bubbles migration, and flexural properties of non-uniform epoxy foams using chemical foaming agent. J. Appl. Polym. Sci. 131 (2014).CrossRefGoogle Scholar
Xie, P.T., He, B., Dang, F., Lin, J., Fan, R.H., Hou, C.X., Liu, H., Zhang, J.X., Ma, Y., and Guo, Z.H.: Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption. J. Mater. Chem. C 6, 8812 (2018).CrossRefGoogle Scholar
Chen, X.L., Zhong, K.L., Shi, T., Meng, X.L., Wu, G.L., and Lu, Y.: Urchin-like polyaniline/magnetic carbon sphere hybrid with excellent electromagnetic wave absorption performance. Synthetic Met. 248, 59 (2019).CrossRefGoogle Scholar
Hou, J.Q., Zhang, L., Qiu, H., Duan, W.J., Wang, X.R., Wan, X.N., and Du, X.Y.: Fabrication and microwave absorption performances of hollow-structure Fe3O4/PANI microspheres. J. Mater. Sci. Mater. Electron. 28, 9279 (2017).CrossRefGoogle Scholar
Li, D.P., Sun, Y.C., Wang, X., Wu, S., Han, S.C., and Yang, Y.: Development of a hollow carbon sphere absorber displaying the multiple-reflection effect to attenuate electromagnetic waves. RSC Adv. 7, 37983 (2017).CrossRefGoogle Scholar
Lv, H.L., Guo, Y.H., Yang, Z.H., Guo, T.C., Wu, H.J., Liu, G., Wang, L.Y., and Wu, R.B.: Doping strategy to boost the electromagnetic wave attenuation ability of hollow carbon spheres at elevated temperatures. ACS Sustain Chem. Eng. 6, 1539 (2018).CrossRefGoogle Scholar