Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T03:30:38.758Z Has data issue: false hasContentIssue false

Preparation of fine-grained MgO and Gd2O3 stabilized ZrO2 thin films by electron beam physical vapor deposition co-evaporation

Published online by Cambridge University Press:  31 January 2011

F. Tcheliebou
Affiliation:
Centre d'Electronique de Montpellier, Laboratoire associé au CNRS, UA 391, Université Montpellier II, Place Eugéne Bataillon, 34095 Montpellier Cédex 5, France
M. Boulouz
Affiliation:
Centre d'Electronique de Montpellier, Laboratoire associé au CNRS, UA 391, Université Montpellier II, Place Eugéne Bataillon, 34095 Montpellier Cédex 5, France
A. Boyer
Affiliation:
Centre d'Electronique de Montpellier, Laboratoire associé au CNRS, UA 391, Université Montpellier II, Place Eugéne Bataillon, 34095 Montpellier Cédex 5, France
Get access

Abstract

Thin films of ZrO2 doped with MgO and Gd2O3, 1–1.5 μm in thickness are formed onto nickel substrates by reactive thermal evaporation using a dual-hearth electron gun. X-ray diffraction patterns of the deposits show changes in the crystallographic structure and average particle size as a function of the dopant content. A mixture of monoclinic and tetragonal phases gradually disappears to become a single cubic phase with increasing dopant molar fraction. The average crystallite size deduced from diffraction line broadening decreases as the dopant content increases. This observation is strongly confirmed by scanning electron micrographs which reveal a smooth surface topography. Fine-grained materials obtained here are interpreted in terms of high nucleation rate and kinetically limited grain growth. It appears that composition, crystallographic structure, and microstructure relations are of paramount importance in ZrO2-based films prepared by electron-beam evaporation.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Unal, O., Mitchell, T. E., and Heuer, A. H., J. Am. Ceram. Soc. 77, 984 (1994).CrossRefGoogle Scholar
2.Subbarao, E. C., in Advances in Ceramics, Science and Technology of Zirconia, edited by Heuer, A. H. and Hobbs, L. W. (The American Ceramic Society, Westerville, OH, 1981), Vol. 3, p.1.Google Scholar
3.Johner, G. and Schweitzer, K., Thin Solid Films 119, 301 (1984).CrossRefGoogle Scholar
4.Orlinkas, A., Bohac, P., Sasaki, K., and Gauckler, L., J. Eur. Ceram. Soc. 12, 87 (1993).CrossRefGoogle Scholar
5.Muccillo, E. N. S. and Kleitz, M., J. Eur. Ceram. Soc. 15, 51 (1995).CrossRefGoogle Scholar
6.Tcheliebou, F., Boyer, A., and Martin, L., Thin Solid Films 249, 85 (1994).CrossRefGoogle Scholar
7.Chu, P. Y., Campion, I., and Buchanan, R. C., J. Mater. Res. 7, 3065 (1992).CrossRefGoogle Scholar
8.Kalkur, T. S. and Lu, Y. C., Thin Solid Films 207, 193 (1992).CrossRefGoogle Scholar
9.Venkatachari, K. R., Stevens, D. H., Ostrander, P., and Schulze, A., J. Mater. Res. 7, 756 (1995).CrossRefGoogle Scholar
10.Lee, H. Y., Richemann, W., and Mordike, B. L., J. Eur. Ceram. Soc. 10, 245 (1992).CrossRefGoogle Scholar
11.Harmsworth, P. D. and Stevens, R., J. Mater. Sci. 27, 616 (1992).CrossRefGoogle Scholar
12.Tcheliebou, F., Boulouz, M., and Boyer, A., Mater. Sci. Eng. B38, 90 (1996).CrossRefGoogle Scholar
13.Chéron, J. P., Tcheliebou, F., and Boyer, A., J. Vac. Sci. Technol. A 10, 3207 (1992).CrossRefGoogle Scholar
14.Williamson, G. K. and Hall, W. H., Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
15.Fox, G. R. and Krupanidhi, S. B., J. Mater. Res. 7, 3039 (1992).CrossRefGoogle Scholar
16.Movchan, B. A. and Demchishin, A. V., Phys. Met. Metallorg. 28, 83 (1969).Google Scholar
17.Tcheliebou, F. and Boyer, A., Mater. Sci. Eng. B 26, 175 (1994).CrossRefGoogle Scholar
18.Grain, C. F., J. Am. Ceram. Soc. 50, 288 (1967).CrossRefGoogle Scholar
19.Balmer, M. L., Lange, F. F., and Levi, C. G., J. Am. Ceram. Soc. 75, 946 (1992).CrossRefGoogle Scholar
20.Leung, D. K., Chan, C. J., Rühle, M., and Lange, F. F., J. Am. Ceram. Soc. 74, 2786 (1991).CrossRefGoogle Scholar
21.Russak, M. A., Jahnes, C. V., and Katz, E. P., J. Vac. Sci. Technol. A 7, 1248 (1989).CrossRefGoogle Scholar