Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T03:23:06.812Z Has data issue: false hasContentIssue false

Processing and characterization of compositionally modified PbTiO3 thin films prepared by pulsed laser deposition

Published online by Cambridge University Press:  31 January 2011

B. W. Lee
Affiliation:
NIST, Gaithersburg, Maryland 20899
L. P. Cook
Affiliation:
NIST, Gaithersburg, Maryland 20899
P. K. Schenck
Affiliation:
NIST, Gaithersburg, Maryland 20899
W. Wong-Ng
Affiliation:
NIST, Gaithersburg, Maryland 20899
C. K. Chiang
Affiliation:
NIST, Gaithersburg, Maryland 20899
P. S. Brody
Affiliation:
U.S. Army Research Laboratory, Adelphi, Maryland 20783
K. W. Bennett
Affiliation:
U.S. Army Research Laboratory, Adelphi, Maryland 20783
Get access

Abstract

Modified lead titanate of 0.9PbTiO3 −0.1Pb(Mg0.5 W0.5)O3 thin films have been deposited onto Pt-coated Si substrates by pulsed laser deposition. Films were crystallized in situ during deposition or by post-depositional heat treatment (post-annealing). Compositional and structural characterization showed that the phase formation and microstructure of the films were highly sensitive to deposition conditions. Perovskite single phase films were formed in situ at 650 °C, PO2 = 40 Pa as well as by post-annealing amorphous films at 650 °C. In the post-annealing process, the amorphous as-deposited phase was crystallized to perovskite and/or pyrochlore, and the ratio of perovskite to pyrochlore was found to be influenced by the depositional PO2. Depending on the deposition temperature, the grain structures of the crystallized films were columnar or equiaxed. A relatively homogeneous surface morphology was obtained by deposition at a lower pressure (PO2 = 13 Pa). The in situ crystallized films showed variable crystallographic orientation. The more (111) oriented films had the lowest remanent polarizations and the highest coercive fields. A method for preparing randomly oriented films, via a two-step deposition process with intermediate annealing, is believed to give the most consistent results and the best ferroelectric properties at the present level of development.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Paz de Araujo, C. A., McMillan, L. D., Melnick, B. M., Cuchiaro, J. D., and Scott, J. F., Ferroelectrics 104, 241256 (1990).CrossRefGoogle Scholar
2.Okuyama, M. and Hamakawa, Y., Ferroelectrics 63, 243252 (1985).CrossRefGoogle Scholar
3.Geideman, W. A., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 38, 704711 (1991).CrossRefGoogle Scholar
4.Grabowski, K. S., Horwitz, J. S., and Chrisey, D. B., Ferroelectrics 116, 1933 (1991).CrossRefGoogle Scholar
5.Dey, S. K. and Zuleeg, R., Ferroelectrics 108, 3746 (1990).CrossRefGoogle Scholar
6.Saenger, K. L., Roy, R. A., Etzold, K. F., and Cuomo, J. J., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), pp. 115120.Google Scholar
7.Petersen, G. A., Jr. and McNeil, J. R., Thin Solid Films 220, 8791 (1992).CrossRefGoogle Scholar
8.Otsubo, S., Maeda, T., Minamikawa, T., Yonezawa, Y., Morimoto, A., and Shimizu, T., Jpn. Appl. Phys. 29 (1), L133–L136 (1990).Google Scholar
9.Schwartz, R. W., Tuttle, B. A., Doughty, D. H., Land, C. E., Goodnow, D. C., Hernandez, C. L., Zender, T. J., and Martinez, S. L., IEEE Trans. Ultras. Ferroelec. Freq. Contr. 38 (6), 677682 (1991).CrossRefGoogle Scholar
10.Krainik, N. N. and Agranovskaya, A. I., Sov. Phys.-Solid State 2, 6365 (1960).Google Scholar
11.Uchino, K., Aizawa, M., and Nomura, S., Ferroelectrics 64, 199208 (1985).CrossRefGoogle Scholar
12.Lee, B. W., Lee, H. M., Cook, L. P., Schenck, P. K., Paul, A., Wong-Ng, W., Chiang, C. K., Brody, P. S., Rod, B. J., and Bennett, K. W., in Laser Ablation in Materials Processing, edited by Braren, B., Dubowski, J. J., and Norton, D. (Mater. Res. Soc. Symp. Proc. 285, Pittsburgh, PA, 1992), pp. 403407.Google Scholar
13.Iijima, K., Tomita, Y., Takayama, R., and Ueda, I., J. Appl. Phys. 60 (1), 361367 (1986).CrossRefGoogle Scholar
14.Ishida, M., Matsunami, H., and Tanaka, T., J. Appl. Phys. 48 (3), 951953 (1977).CrossRefGoogle Scholar
15.Carim, A. H., Tuttle, B. A., Doughty, D. H., and Martinez, S. L., J. Am. Ceram. Soc. 74 (6), 14551458 (1991).CrossRefGoogle Scholar
16.Kumar, C. V. R. Vasant, Pascual, R., and Sayer, M., J. Appl. Phys. 71 (2), 864874 (1992).CrossRefGoogle Scholar
17.Cook, L. P., Vaudin, M. D., Schenck, P. K., Wong-Ng, W., Chiang, C. K., and Brody, P. S., in Evolution of Thin-Film and Surface Microstructure, edited by Thompson, C. V., Tsao, J. Y., and Srolovitz, D. J. (Mater. Res. Soc. Symp. Proc. 202, Pittsburgh, PA, 1991), pp. 241246.Google Scholar
18.Kinsbron, E., Sternheim, M., and Knoell, R., Appl. Phys. Lett. 42 (9), 835837 (1983).CrossRefGoogle Scholar
19.Zaslavskii, A. I. and Bryzhina, M. F., Sov. Phys.-Crystallography 7 (5), 577583 (1963).Google Scholar
20.Arlt, G., Hennings, D., and de With, G., J. Appl. Phys. 58 (4), 16191625 (1985).CrossRefGoogle Scholar
21.Demczyk, B. G., Rai, R. S., and Thomas, G., J. Am. Ceram. Soc. 73 (3), 615620 (1990).CrossRefGoogle Scholar
22.Demczyk, B. G., Khachaturyan, A. G., and Thomas, G., Scripta Metall. 21 (7), 967969 (1989).CrossRefGoogle Scholar
23.Eryu, O., Murakami, K., Masuda, K., Kasuya, A., and Nishina, Y., Appl. Phys. Lett. 54 (26), 27162718 (1989).CrossRefGoogle Scholar
24.Ogawa, T., Senda, A., and Kasanami, T., Jpn. J. Appl. Phys. 30 (9B), 2145–2148 (1991).CrossRefGoogle Scholar
25.Jaffe, B., Cook, W. R., and Jaffe, H., Piezoelectric Ceramics (Academic Press, New York, 1971), pp. 7780.Google Scholar
26.Herbert, J. M., Ferroelectric Ceramics (Gordon and Breach Sci. Pub., New York, 1985), pp. 137145.Google Scholar