Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T02:27:27.217Z Has data issue: false hasContentIssue false

Processing, mechanical properties and oxidation behavior of TaC and HfC composites containing 15 vol% TaSi2 or MoSi2

Published online by Cambridge University Press:  31 January 2011

Diletta Sciti*
Affiliation:
CNR-ISTEC, Institute of Science and Technology for Ceramics, I-48018 Faenza, Italy
Alida Bellosi
Affiliation:
CNR-ISTEC, Institute of Science and Technology for Ceramics, I-48018 Faenza, Italy
*
a) Address all correspondence to this author. e-mail: diletta.sciti@istec.cnr.it
Get access

Abstract

Fully dense HfC and TaC-based composites containing 15 vol% TaSi2 or MoSi2 were produced by hot pressing at 1750–1900 °C. TaSi2 enhanced the sinterability of the composites and nearly fully dense materials were obtained at lower temperatures than in the case of MoSi2-containing ones. The TaC-based composites performed better than HfC composites at room temperature, showing values of mechanical strength up to 900 MPa and a fracture toughness of 4.7 MPa·m1/2. However, preliminary oxidation tests carried out in air at 1600 °C revealed that HfC-based composites have a superior high temperature stability compared to TaC-based materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Toth, L.E.: Transition metal carbides and nitrides, in Refractory Materials, A Series of Monographs, edited by Margrave, J.L. (Academic Press, New York, 1971), pp. 610.Google Scholar
2Storms, E.K.: The refractory carbides, in Refractory Materials, A Series of Monographs, edited by Margrave, J.L. (Academic Press, New York, 1967), p. 94.Google Scholar
3Shvab, S.A. and Egorov, F.F.: Structure and some properties of sintered tantalum carbide. Sov. Powder Metall. Metal Ceram. 21, 894 (1982)CrossRefGoogle Scholar
4Samonov, G.V. and Petrikina, R.Ya.: Sintering of metals, carbides, and oxides by hot pressing. Phys. Sintering 2, 1 (1970)Google Scholar
5Jackson, J.S.: Hot pressing high-temperature compounds. Powder Metall. 8, 73 (1961)CrossRefGoogle Scholar
6Ramqvist, L.: Hot pressing of metallic carbides. Powder Metall. 9, 26 (1966)CrossRefGoogle Scholar
7Scholz, S.: Some new aspects of hot pressing of refractories, in Special Ceramics 1962, Proceedings of a Symposium held by the British Ceramic Research Association, edited by Popper, P. (Academic Press, New York, 1963), pp. 293307.Google Scholar
8Roeder, E. and Klerk, M.: Studies with the electron-beam microanalyzer on hot-pressed tantalum carbide having small additions of manganese and nickel. Z. Metallkd. 54, 462 (1963)Google Scholar
9Zhang, X., Hilmas, G.E., and Fahrenholtz, W.G.: Hot pressing of tantalum carbide with and without sintering additives. J. Am. Ceram. Soc. 90, 393 (2007)CrossRefGoogle Scholar
10Opeka, M.M., Talmy, I.G., Wuchina, E.J., Zaykoski, J.A., and Causey, S.J.: Mechanical, thermal and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc. 19, 2405 (1999)CrossRefGoogle Scholar
11Wuchina, E., Opeka, M., Causey, S., Buesking, K., Spain, J., Cull, A., Routbort, J., and Guitierrez-Mora, F.: Designing for ultrahigh-temperature applications: The mechanical and thermal properties of HfB2, HfCx, HfNx and aHf(N). J. Mater. Sci. 39, 5939 (2004)CrossRefGoogle Scholar
12Sciti, D., Silvestroni, L., and Bellosi, A.: High density pressureless sintered HfC-based composites. J. Am. Ceram. Soc. 89, 2668 (2006)CrossRefGoogle Scholar
13Sciti, D., Guicciardi, S., and Nygren, M.: Densification and mechanical behavior of HfC and HfB2 fabricated by spark plasma sintering. J. Am. Ceram. Soc. 91, 1433 (2008)CrossRefGoogle Scholar
14Santoro, G.: Variation of some properties of tantalum carbide with carbon content. Trans. Metall. Soc. AIME 227, 1361 (1963)Google Scholar
15Balani, K., Gabriela, G., Agarwal, A., Hickman, R., and O'Dell, J.S.: Synthesis, microstructural characterization and mechanical property evaluation of vacuum plasma sprayed tantalum carbide. J. Am. Ceram. Soc. 89, 1419 (2006)CrossRefGoogle Scholar
16Krajewski, A., D'Alessio, L., and Maria, G. de: Physic-chemical and thermophysical properties of cubic binary carbides. Cryst. Res. Technol. 33, 341 (1998)3.0.CO;2-I>CrossRefGoogle Scholar
17Lopez-de-la-Torre, L., Winkler, B., Chreuer, J., Knorr, K., and Avalos-Borja, M.: Elastic properties of tantalum carbide. Solid State Commun. 134, 245 (2005)CrossRefGoogle Scholar
18Wang, C.R. and Yan, J.M.: Thermal stability of refractory carbide/boride composites. Mater. Chem. Phys. 74, 272 (2002)CrossRefGoogle Scholar
19Bargernon, C.B., Bendon, R.C., Jette, A.N., and Phillips, T.E.: Oxidation of hafnium carbide in the temperature range 1400Cto 2060C. J. Am. Ceram. Soc. 76, 1040 (1993)CrossRefGoogle Scholar
20Opeka, M.M., Talmy, I.G., and Zaykoski, J.A.: Oxidation-based materials selection for 2000C+ hypersonic aerosurfaces: Theoretical considerations and historical experience. J. Mater. Sci. 39, 5887 (2004)CrossRefGoogle Scholar
21Savino, R., Funo, M. de Stefano, Silvestroni, L., and Sciti, D.: Arcjet testing on HfB2 and HfC-based ultra-high temperature ceramic material. J. Eur. Ceram. Soc. 28, 1899 (2008)CrossRefGoogle Scholar
22NASA Phase II Final Report: Oxidation resistant HfC-TaC rocket thrusters for high performance propellants. NAS3-27272 (1999).Google Scholar
23Tang, S., Deng, J., Wang, S., Liu, W., and Yang, K.: Ablation behaviors of ultra-high temperature ceramic composites. Mater. Sci. Eng., A 465, 1 (2007)CrossRefGoogle Scholar
24Munz, D.G., Shannon, J.L., and Bubsey, R.T.: Fracture toughness calculation from maximum load in four point bend tests of chevron notch specimens. Int. J. Fract. 16, R137 (1980).CrossRefGoogle Scholar
25Simner, S.P., Xiao, P., and Derby, B.: Processing and microstructural characterization of RBSiC-TaSi2 composites. J. Mater. Sci. 33, 5557 (1998)CrossRefGoogle Scholar
26Balbo, A. and Sciti, D.: Spark plasma sintering and hot pressing of ZrB2-MoSi2 ultra-high temperature ceramics. Mater. Sci. Eng., A 475, 108 (2008)CrossRefGoogle Scholar
27Sciti, D., Guicciardi, S., and Nygren, M.: Spark plasma sintering and mechanical behavior of ZrC-based composites. Scr. Mater. 59, 638 (2008)CrossRefGoogle Scholar
28Silvestroni, L. and Sciti, D.: Microstructure and properties of pressureless sintered ZrC-based materials. J. Mater. Res. 23, 1882 (2008)CrossRefGoogle Scholar
29Fan, X., Kack, K., and Ishigawi, T.: Calculated C-MoSi2 and B-Mo5Si3 pseudo-binary diagrams for the use in advanced materials processing. Mater. Sci. Eng., A 278, 46 (2000)CrossRefGoogle Scholar
30Sciti, D., Silvestroni, L., Celotti, G., Melandri, C., and Guicciardi, S.: Sintering and mechanical properties of ZrB2-TaSi2 and HfB2-TaSi2 ceramic composites. J. Am. Ceram. Soc. 91, 3285 (2008)CrossRefGoogle Scholar
31Sciti, D., Guicciardi, S., and Bellosi, A.: Microstructure and properties of Si3N4-MoSi2 composites. J. Ceram. Proc. Res. 3, 87 (2002)Google Scholar
32Schultes, G., Schmitt, M., Goettel, D., and Freitag-Weber, O.: Strain sensitivity of TiB2, TiSi2, TaSi2 and WSi2 thin films as possible candidates for high temperature strain gauges. Sens. Actuators, A 126, 287 (2006)CrossRefGoogle Scholar
33Nakamura, M., Matsumoto, S., and Hirano, T.: Elastic constants of MoSi2 and WSi2 single-crystals. J. Mater. Sci. 25, 3309 (1990)CrossRefGoogle Scholar
34Chu, F., Lei, M., Maloy, S.A., Petrovic, J.J., and Mitchell, T.E.: Elastic properties of C40 transition metal disilicides. Acta Mater. 44, 3035 (1996)CrossRefGoogle Scholar
35Talmy, I.G., Zaykoski, J.A., and Opeka, M.M.: High temperature chemistry and oxidation of ZrB2 ceramics containing SiC, Si3N4, Ta5Si3 and TaSi2. J. Am. Ceram. Soc. 91, 2250 (2008)CrossRefGoogle Scholar
36Desmaison, M.-Brut, Alexandre, N., and Desmaison, J.: Comparison of the oxidation behavior of two dense hot isostatically pressed tantalum carbide (TaC and Ta2C) materials. J. Eur. Ceram. Soc. 17, 1325 (1997)CrossRefGoogle Scholar
37Shimada, S.: Interfacial reaction on oxidation of carbides with formation of carbon. Solid State Ionics 141–142, 99 (2001)CrossRefGoogle Scholar
38Mattia, D., Desmaison-Brut, M., Dimovski, S., Gogotsi, Y., and Desmaison, J.: Oxidation behavior of an aluminium nitridehafnium diboride ceramic composite. J. Eur. Ceram. Soc. 25, 1789 (2005)CrossRefGoogle Scholar