Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-04T04:18:26.129Z Has data issue: false hasContentIssue false

Properties of nanostructured diamond-silicon carbide composites sintered by high pressure infiltration technique

Published online by Cambridge University Press:  03 March 2011

G.A. Voronin
Affiliation:
Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129
T.W. Zerda*
Affiliation:
Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129
J. Gubicza
Affiliation:
Department of Solid State Physics, Eötvös University, Budapest H-1518, Hungary
T. Ungár
Affiliation:
Department of General Physics, Eötvös University, Budapest H-1518, Hungary
S.N. Dub
Affiliation:
Institute for Superhard Materials of the NAS of Ukraine, Kiev 02074, Ukraine
*
a) Address all correspondence to this author. e-mail address: t.zerda@tcu.edu
Get access

Abstract

A high-pressure silicon infiltration technique was applied to sinter diamond–SiC composites with different diamond crystal sizes. Composite samples were sintered at pressure 8 GPa and temperature 2170 K. The structure of composites was studied by evaluating x-ray diffraction peak profiles using Fourier coefficients of ab initio theoretical size and strain profiles. The composite samples have pronounced nanocrystalline structure: the volume-weighted mean crystallite size is 41–106 nm for the diamond phase and 17–37 nm for the SiC phase. The decrease of diamond crystal size leads to increased dislocation density in the diamond phase, lowers average crystallite sizes in both phases, decreases composite hardness, and improves fracture toughness.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tomlinson, P.N., Pipkin, N.J., Lammer, A. andBurnand, R.P.: High performance drilling–Syndax-3 shows versatility. Ind. Diamond. Rev. 6 299 (1985).Google Scholar
2. A.E. Ringwood: Patent No. 601561, Australia (1988).Google Scholar
3.Voronin, G.A., Osipov, S.A. andShulzhenko, A.A.: Diamond-silicon carbide based composite intended for rock drilling instruments. Mineral. J . 17, 90 (1995).Google Scholar
4.Voronin, G.A. High pressure sintering of diamond- and CBN-based composite materials by infiltration: Main stages and regularities, in Proceedings of Joint AIRAPT-16 & HPCJ-38 Int. Conf., Jap. Soc. High Pressure Sci. Technol. Kyoto, Japan, 1997, p. 467Google Scholar
5.Larsson, P., Axen, N., Ekstrom, T., Gordeev, S. andHogmark, S.: Wear of a new type of diamond composite. Int. J. Refract. Met. Hard Mater . 17, 453 (1999).CrossRefGoogle Scholar
6.Gordeev, S.K., Zhukov, S.K., Danchukova, L.V. andEkstrom, T.C.: Low-pressure fabrication of diamond-SiC-Si composites. Inorg. Mater. 37 579 (2001).CrossRefGoogle Scholar
7.Ownby, P.D. andLiu, J.: Nano diamond enhanced silicon carbide matrix composites. Ceram. Eng. Sci. Proc . 12, 1345 (1991).CrossRefGoogle Scholar
8.Ko, Y.S., Tsurumi, T., Fukunaga, O. andYano, T.: High pressure sintering of diamond-SiC composite. J. Mater. Sci. 36 469 (1992).CrossRefGoogle Scholar
9.Qian, J., Voronin, G.A., Zerda, T.W., He, D. andZhao, Y.: High-pressure, high-temperature sintering of diamond-SiC composites from ball-milled diamond-Si mixtures. J. Mater. Res. 17 2153 (2002).CrossRefGoogle Scholar
10.Voronin, G.A., Zerda, T.W., Qian, J., Zhao, Y., He, D., and Dub, S.N., Diamond-SiC nanocomposites sintered from a mixture of diamond and silicon nanopowders. Diamond Relat. Mater. 12, 1477 (2003).CrossRefGoogle Scholar
11.Jiang, X. andKlages, C.P.: Synthesis of diamond/β–SiC composite films by microwave plasma assisted chemical vapor deposition. Appl. Phys. Lett. 61 1629 (1992).CrossRefGoogle Scholar
12.Khvostantsev, L.G., Vereshchagin, L.F. andNovikov, A.P.: Device of toroid type for high pressure generation. High Temp.-High Press. 9 637 (1977).Google Scholar
13.Anatis, G.R., Chantkul, P., Lawn, B.R. andMarshall, D.W.: A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements. J. Am. Ceram. Soc. 64 533 (1981).Google Scholar
14.Ungar, T., Gubicza, J., Ribarik, G. andBorbely, A.: Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 34 298 (2001).CrossRefGoogle Scholar
15.Wilkens, M. In Fundamental Aspects of Dislocation Theory, Vol. II, edited by Simmons, J.A., de Wit, R., Bullough, R., (U.S. National Bureau Standards, Special Publication No. 317, Washington, DC, 1970), p. 1195Google Scholar
16.Ungár, T. andTichy, G.The effect of dislocation contrast on x-ray line profiles in untextured polycrystals. Phys. Status Solidi A 171, 425 (1999)3.0.CO;2-W>CrossRefGoogle Scholar
17.McSkimin, H.J. andBond, W.L.: Elastic moduli of diamond. Phys. Rev. 105 116 (1957).CrossRefGoogle Scholar
18.Chung, D.H. andBuessem, W.R.Anisotropy of Single Crystal Refractory Compounds (Plenum Press, New York, 1968), p. 2Google Scholar
19.Ungár, T., Dragomir, I., Révész, Á. andBorbély, A.: The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice. J. Appl. Crystallogr. 32 992 (1999).CrossRefGoogle Scholar
20.Gubicza, J., Kassem, M., Ribárik, G. andUngár, T.: The evolution of the microstructure in mechanically alloyed Al-Mg studied by x-ray diffraction. Mater. Sci. Eng. A 372 115 (2004).CrossRefGoogle Scholar
21.Voronin, G., Pantea, C., Zerda, T.W. andEjsmont, K.: Oriented growth of β-SiC on diamond crystals at high pressure. J. Appl. Phys. 90 5933 (2001).CrossRefGoogle Scholar
22.Ozbayraktar, S. In Handbook of Ceramic Hard Materials, edited by Riedl, R. (Wiley-VCH, Weinheim, Germany, 2000), p. 512Google Scholar
23.Veprek, S. In Handbook of Ceramic Hard Materials, edited by Riedl, R. (Wiley-VCH, Weinheim, Germany, 2000), p. 104.CrossRefGoogle Scholar