Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T00:56:33.805Z Has data issue: false hasContentIssue false

A quasicrystalline transition state in an annealed Al65Cu20Fe15 alloy

Published online by Cambridge University Press:  31 January 2011

Z. Zhang
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, Postfach 1913, D-5170 Jülich, Germany
N.C. Li
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, Postfach 1913, D-5170 Jülich, Germany
K. Urban
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, Postfach 1913, D-5170 Jülich, Germany
Get access

Abstract

A quasicrystalline transition state was found in an Al65Cu20Fe15 alloy after heat treatment at 700 °C and subsequent slow cooling of samples originally containing the icosahedral quasicrystalline phase. The transition state is characterized by the simultaneous presence of two types of quasicrystalline domains. Their structure can be obtained by the introduction of one-dimensional periodicity along one of the fivefold axes of the original icosahedral quasicrystal. The two types of domains differ in their period lengths which are obtained by multiplying a fundamental length of the icosahedral structure by the Fibonacci numbers 5 and 8.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Tsai, A. P., Inoue, A., and Masumoto, T., Jpn. J. Appl. Phys. 26, L1505 (1987).CrossRefGoogle Scholar
2Ebalard, S. and Spaepen, F., J. Mater. Res. 5, 62 (1990).Google Scholar
3Devaud-Rzepski, J., Quivy, A., Calvayrac, Y., Cornier-Quiquandon, M., and Gratias, D., Philos. Mag. B 60, 855 (1989).Google Scholar
4He, L. X., Wu, Y. K., and Kuo, K. H., J. Mater. Sci. Lett. 7, 1284 (1988).CrossRefGoogle Scholar
5Hiraga, K., Zhang, B. P., Hirabayashi, M., Inoue, A., and Masumoto, T., Jpn. J. Appl. Phys. 27, L951 (1988).CrossRefGoogle Scholar
6Ishimasa, T., Fukano, Y., and Tsuchimori, M., Philos. Mag. Lett. 58, 157 (1988).CrossRefGoogle Scholar
7Bancel, P. A., Phys. Rev. Lett. 63, 2741 (1989).Google Scholar
8Audier, M., de Boissieu, M., Dubois, J. M., and Janot, C., preprint (1990).Google Scholar
9Audier, M., Bréchet, Y., de Boissieu, M., Guyot, P., Janot, C., and Dubois, J. M., preprint (1990).Google Scholar
10Cahn, J. W., Shechtman, D., and Gratias, D., J. Mater. Res. 1, 13 (1986).CrossRefGoogle Scholar
11Zhang, Z. and Kuo, K. H., J. Microscopy 146, 313 (1987).Google Scholar
12Kimura, K., Hashimoto, T., Suzuki, K., Nagayama, K., Ino, H., and Takeuchi, S., J. Phys. Soc. Jpn. 55, 534 (1986).CrossRefGoogle Scholar
13Ishii, Y., Phys. Rev. B 39, 11862 (1989).CrossRefGoogle Scholar
14Ishii, Y., J. Non-Cryst. Solids 117/118, 840 (1990).CrossRefGoogle Scholar
15He, L. X., Li, X. Z., Zhang, Z., and Kuo, K. H., Phys. Rev. Lett. 61, 1116 (1988).Google Scholar
16Zhang, Z. and Urban, K., Scripta Metall. 23, 767 (1989).CrossRefGoogle Scholar
17Dénoyer, F., Heger, G., Lambert, L., Audier, M., and Guyot, P., J. de Physique (in press).Google Scholar