Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T00:09:48.005Z Has data issue: false hasContentIssue false

Rapidly quenched Y–Pd–B–C borocarbides: Identification of the superconducting metastable phases

Published online by Cambridge University Press:  31 January 2011

V. Ström
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, S–100 44 Stockholm, Sweden
K. S. Kim
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, S–100 44 Stockholm, Sweden
A. M. Grishin
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, S–100 44 Stockholm, Sweden
K. V. Rao
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, S–100 44 Stockholm, Sweden
Get access

Abstract

Rapidly quenched melt-spun ribbons of palladium-based borocarbides with large fractions of the superconducting phase (Tc > 20 K) have been obtained. Superconductivity in the Pd-based alloys seems to be metastable and exists only in the rapidly quenched state. Thus, while in the as-cast state the YPd2B2C ingot is found to be paramagnetic, the rapidly quenched ribbon superconducts and has a simple XRD pattern characteristic for a fcc lattice with a lattice parameter of 4.15 Å. A systematic study in an annealing sequence shows decay of the superconducting phase above 750 °C. The reduction in the integral intensities of XRD fcc peaks correlates well with the loss of the superconducting fraction on successive annealing. The recently reported tetragonal phase, attributed to the superconducting state in this system, is not found in any of our rapidly quenched samples. We present the phase diagrams indicating the optimum composition regimes for superconductivity in the Y–Ni–B–C and Y–Pd–B–C systems. From our magnetic data the values for the upper critical field Hc2(0), and the coherence length ξ(0) are estimated to be 10 Tesla and 57 Å, respectively, for the rapidly quenched YPd2B2C superconducting ribbons.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mazumdar, C., Nagarajan, R., Godart, C., Gupta, L. C., Latroche, M., Dhar, S. K., Levy-Clement, C., Padalia, B. D., and Vijayaraghavan, R., Solid State Commun. 87, 413416 (1993).CrossRefGoogle Scholar
2.Nagarajan, R., Mazumdar, C., Hussain, Z., Dhar, S. K., Gopalakrishnan, K. V., Gupta, L. C., Godart, C., Padalia, B. D., and Vijayaraghavan, R., Phys. Rev. Lett. 72, 274277 (1994).CrossRefGoogle Scholar
3.Cava, R. J., Takagi, H., Batlogg, B., Zandbergen, H. W., Krajewski, J.J., Peck, W. F. Jr., van Dover, R. B., Felder, R. J., Siegrist, T., Mizuhashi, K., Lee, J.O., Eisaki, H., Carter, S. A., and Uchida, S., Nature 367, 146148 (1994).CrossRefGoogle Scholar
4.Cava, R. J., Takagi, H., Zandbergen, H. W., Krajewski, J. J., Peck, W. F. Jr., Siegrist, T., Batlogg, B., van Dover, R. B., Felder, R. J., Mizuhashi, K., Lee, J. O., Eisaki, H., and Uchida, S., Nature 367, 252253 (1994).CrossRefGoogle Scholar
5.Siegrist, T., Zandbergen, H. W., Cava, R. J., Krajewski, J. J., and Peck, W. F., Jr., Nature 367, 254256 (1994).CrossRefGoogle Scholar
6.Ström, V., Turkki, T., Grishin, A. M., and Rao, K. V., 4th conference NSSC, 2528 May 1994, Varberg, Sweden.Google Scholar
7.Ström, V., Kim, K. S., Mouroux, A., Turkii, T., Grishin, A. M., and Rao, K. V., Physica C 235–240, 25372538 (1994).CrossRefGoogle Scholar
8.Sun, Y. Y., Rusakova, I., Meng, R. L., Cao, Y., Gautier-Picard, P., Chu, C. W., Physica C 230, 435442 (1994).CrossRefGoogle Scholar
9.Zandbergen, H. W., Sloof, W. G., Cava, R. J., Krajewski, J.J., and Peck, W. F., Jr., Physica C 226, 365376 (1994).CrossRefGoogle Scholar
10.Werthamer, N. R., Helfand, E., and Hohenberg, P. C., Phys. Rev. 147, 295 (1966).CrossRefGoogle Scholar