Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T00:03:45.612Z Has data issue: false hasContentIssue false

Rare-earth-doped α′-Sialon ceramics with novel optical properties

Published online by Cambridge University Press:  31 January 2011

B. S. B. Karunaratne
Affiliation:
Centre for Advanced Materials, University of Warwick, Coventry, CV4 7AL, United Kingdom
R. J. Lumby
Affiliation:
Centre for Advanced Materials, University of Warwick, Coventry, CV4 7AL, United Kingdom
M. H. Lewis
Affiliation:
Centre for Advanced Materials, University of Warwick, Coventry, CV4 7AL, United Kingdom
Get access

Abstract

A new phenomenon in the field of Sialon ceramics is reported which may lead to applications based on their optical or electronic properties in combination with their mechanical and thermal properties. For the first time a colored α′-Sialon ceramic has been synthesized, with relatively high optical transparency by careful control of the sintering atmosphere, and adding suitable rare earths as stabilizing cations. This compares with normal Sialons and silicon nitrides which are grey-black in color and are opaque. Oxidation/reduction mechanisms have been identified as an influence on the valence of the stabilizing cation, which is responsible for the unusual optical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hampshire, S., Park, H. K., Thompson, D. P., and Jack, K. H., Nature (London) 274, 880 (1978).CrossRefGoogle Scholar
2.Izumi, F., Mitomo, M., and Suzuki, J., J. Mater. Sci. Lett. 1, 553 (1982).CrossRefGoogle Scholar
3.Stutz, D., Greil, P., and Petzow, G., J. Mater. Sci. Lett. 5, 335 (1986).CrossRefGoogle Scholar
4.Söderlund, E. and Ekström, T., J. Mater. Sci. 25, 4815 (1990).CrossRefGoogle Scholar
5.Hewett, C. L., Cheng, Y. B., Muddle, B. C., and Trigg, M. B., J. Mater. Sci. Lett. 13, 1612 (1994).CrossRefGoogle Scholar
6.Huang, Z. K., Tien, T. Y., and Yen, T. S., J. Am. Ceram. Soc. 69 (10), C241 (1986).CrossRefGoogle Scholar
7.Jasper, C. A. and Lewis, M. H., Ceramic Materials and Components for Engines, edited by Carlsson, R., Johansson, T., and Kahlman, L. (Elsevier Appl. Sci., London), 424 (1992).Google Scholar
8.Wang, P. L., Sum, W. Y., and Yen, T. S., in Silicon Nitride Ceramics: Scientific and Technological Advances, edited by Chen, I-W., Becher, P. F., Mitomo, M., Petzow, G., and Yen, T-S. (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993), p. 387.Google Scholar
9.Thompson, D. P., Tailoring of Mechanical Properties of Si3N4 Ceramics, edited by Hoffman, M.J. and Petzow, G. (Kluwer Academic Pub. 1994), Vol. 276, p. 125.CrossRefGoogle Scholar
10.Mejeha, I. M., Ph.D. Thesis (Optical Spectra and Energy Levels of Divalent Ytterbium and Samarium Ions in Some Alkali Halides), University of Warwick, 1988.Google Scholar
11.Lizzo, S., Meijernk, A., and Blasse, G., J. Lumin. 59, 185 (1994).CrossRefGoogle Scholar
12.Qz das, E., Kortan, A. R., Kopylov, N., Ramirez, A. P., Siegrist, T., Rabe, K. M., Bair, H. E., Schuppler, S., and Citrin, P. H., Nature (London) 375, 126 (1995).Google Scholar
13.Freiser, M. J., Nethfese, S., and Hotzberg, F., J. Appl. Phys. 39, 900 (1968).CrossRefGoogle Scholar
14.CRC Handbook of Chemistry and Physics, 73rd ed., David, R. L., editor in-chief (19921993), pp. 4121.Google Scholar
15.Dupree, R., Lewis, M. H., and Smith, M. E., J. Appl. Crystallogr. 21, 109 (1988).CrossRefGoogle Scholar
16.Gaukler, L. J., Lukas, H. L. and Petzow, G., J. Am. Ceram. Soc. 58, 346 (1975).CrossRefGoogle Scholar