Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T01:24:44.581Z Has data issue: false hasContentIssue false

Recent progress on manganese dioxide based supercapacitors

Published online by Cambridge University Press:  31 January 2011

Chengjun Xu
Affiliation:
Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen City, Guangdong Province, 518055 China
Feiyu Kang*
Affiliation:
Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen City, Guangdong Province, 518055 China; and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
Hongda Du
Affiliation:
Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen City, Guangdong Province, 518055 China
*
a)Address all correspondence to this author. e-mail: fykang@tsinghua.edu.cn
Get access

Abstract

The increasing worldwide interest in MnO2 for supercapacitor applications is based on anticipation that MnO2-based high-voltage aqueous supercapacitors will ultimately serve as a safe and low-cost alternative to state-of-the-art commercial organic-based electrochemical double-layer capacitors or RuO2-based acid systems. In this paper, the physicochemical features, synthesis methods, and charge storage mechanism of MnO2 as well as the current status of MnO2-based supercapacitors are summarized and discussed in detail. The future opportunities and challenges related to MnO2-based supercapacitors have also been proposed.

Type
Reviews
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Conway, B.E.Electrochemical Supercapacitor: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum Publishers, New York 1999)CrossRefGoogle Scholar
2.Burke, A.Ultracapacitors: Why, how, and where is the technology. J. Power Sources 91, 37 (2000)CrossRefGoogle Scholar
3.Yoda, S., Lshihara, K.The advent of battery-based societies and the global environment in the 21st century. J. Power Sources 68, 3 (1997)CrossRefGoogle Scholar
4.Becker, H. An electrochemical capacitor. U.S. Patent No. 2800616[P] (1957)Google Scholar
5.Yoshino, A., Tsubata, T., Shimoyamada, M., Satake, H., Okano, Y., Mori, S., Yata, S.Development of a lithium-type advanced energy storage device. J. Electrochem. Soc. 151, (12)A2180 (2004)CrossRefGoogle Scholar
6.Zheng, J.P.Ruthenium oxide-carbon composite electrodes for electrochemical capacitors. Electrochem. Solid-State Lett. 2, 359 (1999)CrossRefGoogle Scholar
7.Zheng, J.P., Cygan, P.J., Jow, T.R.Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142, 2699 (1995)CrossRefGoogle Scholar
8.Lee, H.Y., Goodenough, J.B.Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium chloride (KCl) aqueous solution. J. Solid State Chem. 148, 81 (1999)CrossRefGoogle Scholar
9.Lee, H.Y., Goodenough, J.B.Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144, 220 (1999)CrossRefGoogle Scholar
10.Hong, M.S., Lee, S.H., Kim, S.W.Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor. Electrochem. Solid-State Lett. 5, A227 (2002)CrossRefGoogle Scholar
11.Bélanger, D., Brousse, T., Jeffrey, W.L.Manganese dioxides: Battery materials make the leap to electrochemical capacitors. Electrochem. Soc. Interface (2008)CrossRefGoogle Scholar
12.Xu, C., Li, B., Du, H., Kang, F., Zeng, Y.The capacitive behavior and charge storage mechanism of manganese dioxide in aqueous mild solution containing bivalent cations. J. Electrochem. Soc. 156, (1)A73 (2009)CrossRefGoogle Scholar
13.Besenhard, J.O.Handbook of Battery Materials (Wiley-VCH 1999)Google Scholar
14.Toupin, M., Brousse, T., Bélanger, D.Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide. Chem. Mater. 14, 3946 (2002)CrossRefGoogle Scholar
15.Brousse, T., Toupin, M., Dugas, R., Athouel, L., Crosnier, O., Bélanger, D.Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc. 153, (12)A2171 (2006)CrossRefGoogle Scholar
16.Aronson, B.J., Kinser, A.K., Passerini, S., Smyrl, W.H., Stein, A.Synthesis, characterization, and electrochemical properties of magnesium birnessite and zinc chalcophanite prepared by a low-temperature route. Chem. Mater. 11, 949 (1999)CrossRefGoogle Scholar
17.Xu, C., Li, B., Du, H., Kang, F., Zeng, Y.Electrochemical properties of nanosized hydrous manganese dioxide synthesized by a self-reacting microemulsion method. J. Power Sources 180, 664 (2008)CrossRefGoogle Scholar
18.Devaraj, S., Munichandraiah, N.Electrochemical supercapacitor studies of nanostructured α-MnO2 synthesized by microemulsion method and the effect of annealing. J. Electrochem. Soc. 154, (2)A80 (2007)CrossRefGoogle Scholar
19.Jeong, Y.U., Manthiram, A.Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes. J. Electrochem. Soc. 149, A1419 (2002)CrossRefGoogle Scholar
20.Chen, S., Zhu, J.W., Han, Q.F., Zheng, Z.J., Yang, Y., Wang, X.Shape-controlled synthesis of one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical properties. Cryst. Growth Des. 9, 4357 (2009)CrossRefGoogle Scholar
21.Jiang, R.R., Huang, T., Liu, J.L., Zhuang, J.H., Yu, A.S.A novel method to prepare nanostructured manganese dioxide and its electrochemical properties as a supercapacitor electrode. Electrochim. Acta 54, 3047 (2009)CrossRefGoogle Scholar
22.Beaudrouet, E., La Salle, A.L.G., Guyomard, D.Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials. Electrochim. Acta 54, 1240 (2009)CrossRefGoogle Scholar
23.Luo, J-Y., Li, X-L., Xia, Y-Y.Synthesis of highly crystalline spinel LiMn2O4 by a soft chemical route and its electrochemical performance. Electrochim. Acta 52, 4525 (2007)CrossRefGoogle Scholar
24.Ni, J.P., Lu, W.C., Zhang, L.M., Yue, B.H., Shang, X.F., Lv, Y.Low-temperature synthesis of monodisperse 3D manganese oxide nanoflowers and their pseudocapacitance properties. J. Phys. Chem. C 113, 54 (2009)CrossRefGoogle Scholar
25.Ragupathy, P., Park, D.H., Campet, G., Vasan, H.N., Hwang, S-J., Choy, J-H., Munichandraiah, N.Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J. Phys. Chem. C 113, 6360 (2009)CrossRefGoogle Scholar
26.Qu, Q.T., Zhang, P., Wang, B., Chen, Y.H., Tian, S., Wu, Y.P., Holze, R.Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J. Phys. Chem. C 113, 14020 (2009)CrossRefGoogle Scholar
27.Ghaemi, M., Ataherian, F., Zolfaghari, A., Jafari, S.M.Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode effects of physisorbed water and proton conduction. Electrochim. Acta 53, 4607 (2008)CrossRefGoogle Scholar
28.Zolfaghari, A., Ataherian, F., Ghaemi, M., Gholami, A.Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method. Electrochim. Acta 52, 2904 (2007)CrossRefGoogle Scholar
29.Reddy, R.N., Reddy, R.G.Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material. J. Power Sources 124, 330 (2003)CrossRefGoogle Scholar
30.Long, J.W., Swider-Lyons, K.E., Stroud, R.M., Rolison, D.R.Design of pore and matter architectures in manganese oxide charge-storage materials. Electrochem. Solid-State Lett. 3, 453 (2000)CrossRefGoogle Scholar
31.Franger, S., Bach, S., Farcy, J., Pereira-Ramos, J.P., Baffier, N.Synthesis, structural and electrochemical characterizations of the sol-gel birnessite MnO1.84·0.6H2O. J. Power Sources 109, 262 (2002)CrossRefGoogle Scholar
32.Subramanian, V., Zhu, H.W., Wei, B.Q.Nanostructured MnO2 hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material. J. Power Sources 159, 361 (2006)CrossRefGoogle Scholar
33.Subramanian, V., Zhu, H., Vajtai, R., Ajayan, P.M., Wei, B.Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. 109, (43)20207 (2005)CrossRefGoogle ScholarPubMed
34.Tang, X.H., Liu, Z-H., Zhang, C.X., Yang, Z., Wang, Z.L.Synthesis and capacitive property of hierarchical hollow manganese oxide nanospheres with large specific surface area. J. Power Sources 193, 939 (2009)CrossRefGoogle Scholar
35.Wang, N., Pang, H.T., Peng, H.R., Li, G.C., Chen, X.G.Hydrothermal synthesis and electrochemical properties of MnO2 nanostructures. Cryst. Res. Technol. 44, 1230 (2009)CrossRefGoogle Scholar
36.Tang, N.A., Tian, X.K., Yang, C., Pi, Z.B.Facile synthesis of α-MnO2 nanostructures for supercapacitors. Mater. Res. Bull. 44, 2062 (2009)CrossRefGoogle Scholar
37.Sui, N., Duan, Y., Jiao, X., Chen, D.Large-scale preparation and catalytic properties of one-dimensional α/β-MnO2 nanostructures. J. Phys. Chem. C 113, 8560 (2009)CrossRefGoogle Scholar
38.Yu, C.C., Zhang, L.X., Shi, J.L., Zhao, J.J., Gao, J.H., Yan, D.S.A simple template-free strategy to synthesize nanoporous manganese and nickel oxides with narrow pore-size distribution, and their electrochemical properties. Adv. Funct. Mater. 18, 1544 (2008)CrossRefGoogle Scholar
39.Rajeswari, J., Kishore, P.S., Viswanathan, B., Varadarajan, T.K.One-dimensional MoO2 nanorods for supercapacitor applications. Electrochem. Commun. 11, 572 (2009)CrossRefGoogle Scholar
40.Donne, S.W., Hollenkamp, A.F., Jones, B.C.Structure, morphology and electrochemical behaviour of manganese oxides prepared by controlled decomposition of permanganate. J. Power Sources 195, 367 (2010)CrossRefGoogle Scholar
41.Yuan, A.B., Wang, M.L., Wang, Y.Q., Hu, J.Textural and capacitive characteristics of MnO2 nanocrystals derived from a novel solid-reaction route. Electrochim. Acta 54, 1021 (2009)CrossRefGoogle Scholar
42.Yu, P., Zhang, X., Chen, Y., Ma, Y.W., Qi, Z.P.Preparation and pseudo-capacitance of birnessite-type MnO2 nanostructures via microwave-assisted emulsion method. Mater. Chem. Phys. 118, 303 (2009)CrossRefGoogle Scholar
43.Devaraj, S., Munichandraiah, N.The effect of nonionic surfactant triton X-100 during electrochemical deposition of MnO2 on its capacitance properties. J. Electrochem. Soc. 154, A901 (2007)CrossRefGoogle Scholar
44.Nagarajan, N., Humadi, H., Zhitomirsky, I.Cathodic electrodeposition of MnOx films for electrochemical supercapacitors. Electrochim. Acta 51, 3039 (2006)CrossRefGoogle Scholar
45.Xue, T., Xu, C-L., Zhao, D-D., Li, X-H., Li, H-L.Electrodeposition of mesoporous manganese dioxide supercapacitor electrodes through self-assembled triblock copolymer templates. J. Power Sources 164, 953 (2007)CrossRefGoogle Scholar
46.Hu, C-C., Tsou, T-W.Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem. Commun. 4, 105 (2002)CrossRefGoogle Scholar
47.Hu, C-C., Wang, C-C.Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition. J. Electrochem. Soc. 150, A1079 (2003)CrossRefGoogle Scholar
48.Broughton, J.N., Brett, M.J.Variations in MnO2 electrodeposition for electrochemical capacitors. Electrochim. Acta 50, 4814 (2005)CrossRefGoogle Scholar
49.Prasad, K.R., Miura, N.Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors. J. Power Sources 135, 354 (2004)CrossRefGoogle Scholar
50.Wei, J., Nagarajan, N., Zhitomirsky, I.Manganese oxide films for electrochemical supercapacitors. J. Mater. Process. Technol. 186, 356 (2007)CrossRefGoogle Scholar
51.Wu, Y-T., Hu, C-C.Effects of electrochemical activation and characteristics of thick MnO2 deposits. J. Electrochem. Soc. 151, A2060 (2004)CrossRefGoogle Scholar
52.Lee, C.Y., Tsai, H.M., Chuang, H.J., Li, S.Y., Lin, P., Tseng, T.Y.Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes. J. Electrochem. Soc. 152, A716 (2005)CrossRefGoogle Scholar
53.Pang, S-C., Anderson, M.A., Chapman, T.W.Novel electrode materials for thin-film ultracapacitor: Comparison of electrode properties of sol-gel-derived and electrodeposited manganese dioxide. J. Electrochem. Soc. 147, 444 (2000)CrossRefGoogle Scholar
54.Toupin, M., Brousse, T., Bélanger, D.Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184 (2004)CrossRefGoogle Scholar
55.Xiao, W., Xia, H., Fuh, J.Y.H., Lu, L.Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties. J. Power Sources 193, 935 (2009)CrossRefGoogle Scholar
56.Tang, X.H., Liu, Z-H., Zhang, C.X., Yang, Z.P., Wang, Z.L.Synthesis and capacitive property of hierarchical hollow manganese oxide nanospheres with large specific surface area. J. Power Sources 193, 939 (2009)CrossRefGoogle Scholar
57.Yuan, J.Q., Liu, Z-H., Qiao, S.F., Ma, X.R., Xu, N.C.Fabrication of MnO2-pillared layered manganese oxide through an exfoliation-reassembling and oxidation process. J. Power Sources 189, 1278 (2009)CrossRefGoogle Scholar
58.Omomo, Y., Sasaki, T., Wang, L.Z., Watanabe, M.Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J. Am. Chem. Soc. 125, 3568 (2003)CrossRefGoogle ScholarPubMed
59.Kadoma, Y., Uchimoto, Y., Wakihara, M.Synthesis and structural study on MnO2 nanosheet material by x-ray absorption spectroscopic technique. J. Phys. Chem. B 110, 174 (2006)CrossRefGoogle Scholar
60.Yan, J., Wei, T., Cheng, J., Fan, Z.J., Zhang, M.L.Preparation and electrochemical properties of lamellar MnO2 for supercapacitors. Mater. Res. Bull. 45, 210 (2010)CrossRefGoogle Scholar
61.Cushing, B.L., Kolesnichenko, V.L., O’Connor, C.J.Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, (9)3893 (2004)CrossRefGoogle ScholarPubMed
62.Winsor, P.A.Binary and multicomponent solutions of amphiphilic compounds. Solubilization and the formation, structure, and theoretical significance of liquid crystalline solutions. Chem. Rev. 68, 1 (1968)CrossRefGoogle Scholar
63.Zhang, W., Qiao, X., Chen, J.Synthesis of silver nanoparticles: Effects of concerned parameters in water/oil microemulsion. Mater. Sci. Eng., B 142, 1 (2007)CrossRefGoogle Scholar
64.Subramanian, V., Zhu, H.W., Wei, B.Q.Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochem. Commun. 8, 827 (2004)CrossRefGoogle Scholar
65.Dong, X.P., Shen, W.H., Gu, J.L., Xiong, L.M., Zhu, Y.F., Li, H., Shi, J.L.MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. J. Phys. Chem. B 110, 6015 (2006)CrossRefGoogle ScholarPubMed
66.Fischer, A.E., Pettigrew, K.A., Rolison, D.R., Stroud, R.M., Long, J.W.Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors. Nano Lett. 7, 281 (2007)CrossRefGoogle ScholarPubMed
67.Yan, J., Fan, Z.J., Wei, T., Qian, W., Zhang, M., Wei, F.Preparation of exfoliated graphite containing manganese oxides with high electrochemical capacitance by microwave irradiation. Carbon 47, (14)3371 (2009)CrossRefGoogle Scholar
68.Su, D.S., Schlögl, R.Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem 3, (2)136 (2010)CrossRefGoogle ScholarPubMed
69.Reddy, A.L.M., Shaijumon, M.M., Gowda, S.R., Ajayan, P.M.Multisegmented Au–MnO2–carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications. J. Phys. Chem. C (2010) doi: 10.1021/jp908739qCrossRefGoogle Scholar
70.Kim, H., Popov, B.N.Synthesis and characterization of MnO2-based mixed oxides as supercapacitors. J. Electrochem. Soc. 150, D56 (2003)CrossRefGoogle Scholar
71.Chen, Y-S., Hu, C-C.Capacitive characteristics of binary manganese-nickel oxides prepared by anodic deposition. Electrochem. Solid-State Lett. 6, A210 (2003)CrossRefGoogle Scholar
72.Prasad, K.R., Miura, N.Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem. Commun. 6, 1004 (2004)CrossRefGoogle Scholar
73.Machefaux, E., Brousse, T., Belanger, D., Guyomard, D.Supercapacitor behavior of new substituted manganese dioxides. J. Power Sources 165, 651 (2007)CrossRefGoogle Scholar
74.Lee, M-T., Chang, J-K., Hsieh, Y-T., Tsai, W-T.Annealed Mn–Fe binary oxides for supercapacitor applications. J. Power Sources 185, 1550 (2008)CrossRefGoogle Scholar
75.Trasatti, S.Physical electrochemistry of ceramic oxides. Electrochim. Acta 36, 225 (1991)CrossRefGoogle Scholar
76.Kadoma, Y., Oshitari, S., Ui, K., Kumagai, N.Synthesis of hollandite-type LixMnO2 by Li+ ion-exchange in molten salt and lithium insertion characteristics. Electrochim. Acta 53, 1697 (2007)CrossRefGoogle Scholar
77.Johnson, C.S.Development and utility of manganese oxides as cathodes in lithium batteries. J. Power Sources 165, 559 (2007)CrossRefGoogle Scholar
78.Wen, S., Lee, J-W., Yeo, I-H., Park, J., Mho, S-I.The role of cations of the electrolyte for the pseudocapacitive behavior of metal oxide electrodes, MnO2 and RuO2. Electrochim. Acta 50, 849 (2004)CrossRefGoogle Scholar
79.Xu, C., Li, B., Du, H., Kang, F., Zeng, Y.Supercapacitive studies on amorphous MnO2 in mild solutions. J. Power Sources 184, 691 (2008)CrossRefGoogle Scholar
80.Kuo, S-L., Wu, N-L.Investigation of pseudocapacitive charge-storage reaction of MnO2·nH2O supercapacitors in aqueous electrolytes. J. Electrochem. Soc. 153, A1317 (2006)CrossRefGoogle Scholar
81.Athouel, L., Moser, F., Dugas, R., Crosnier, O., Belanger, D., Brousse, T.Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte. J. Phys. Chem. C 112, 7270 (2008)CrossRefGoogle Scholar
82.Hu, C-C., Wu, Y-T., Chang, K-H.Low-temperature hydrothermal synthesis of Mn3O4 and MnOOH single crystals: Determinant influence of oxidants. Chem. Mater. 20, 2890 (2008)CrossRefGoogle Scholar
83.Devaraj, S., Munichandraiah, N.Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 112, 4406 (2008)CrossRefGoogle Scholar
84.Ghodbane, O., Pascal, J-L., Favier, F.Microstructural effects on charge-storage properties in MnO2-Based electrochemical supercapacitors. Appl. Mater. Inter. 1, 1130 (2009)CrossRefGoogle ScholarPubMed
85.Chang, J-K., Lee, M-T., Tsai, W-T., Deng, M-J., Sun, I-W.X-ray photoelectron spectroscopy and in situ x-ray absorption spectroscopy studies on reversible insertion-desertion of dicyanamide anions into-from manganese oxide in ionic liquid. Chem. Mater. 21, 2688 (2009)CrossRefGoogle Scholar
86.Lee, M-T., Tsai, W-T., Deng, M-J., Cheng, H-F., Sun, I-W., Chang, J-K.Pseudocapacitance of MnO2 originates from reversible insertion-desertion of thiocyanate anions studied using in situ x-ray absorption spectroscopy in ionic liquid electrolyte. J. Power Sources 195, 919 (2010)CrossRefGoogle Scholar
87.Xu, C., Li, B., Du, H., Kang, F., Zeng, Y.The reversible insertion properties of zinc ion into manganese dioxide and its application for energy storage. Electrochem. Solid-State Lett. 12, (4)A61 (2009)CrossRefGoogle Scholar
88.Xu, C., Li, B., Du, H., Kang, F., Zeng, Y.Asymmetric activated carbon-manganese dioxide capacitors in mild aqueous electrolytes containing alkaline-earth cations. J. Electrochem. Soc. 156, A435 (2009)CrossRefGoogle Scholar
89.Simon, P., Gogotsi, Y.Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008)CrossRefGoogle ScholarPubMed
90.Nam, K-W., Kim, M.G., Kim, K-B.In situ Mn K-edge x-ray absorption spectroscopy studies of electrodeposited manganese oxide films for electrochemical capacitors. J. Phys. Chem. C 111, 749 (2007)CrossRefGoogle Scholar
91.Béguin, F., Khomenko, V., Raymundo-Pinero, E.Optimization of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium. J. Power Sources 153, 183 (2006)Google Scholar
92.Brousse, T., Belanger, D.A hybrid Fe3O4–MnO2 capacitor in mild aqueous electrolyte. Electrochem. Solid-State Lett. 6, A244 (2003)CrossRefGoogle Scholar
93.Luo, J-Y., Liu, J-L., He, P., Xia, Y-Y.A novel LiTi2(PO4)3/MnO2 hybrid supercapacitor in lithium sulfate aqueous electrolyte. Electrochim. Acta 53, 8182 (2008)CrossRefGoogle Scholar
94.Khomenko, V., Raymundo-Pinero, E., Frackowiak, E., Béguin, F.High voltage asymmetric supercapacitors operating in aqueous electrolyte. Appl. Phys. A - Mater. 82, 567 (2006)CrossRefGoogle Scholar
95.Qu, Q.T., Shi, Y., Tian, S., Chen, Y.H., Wu, Y.P., Holze, R.A new cheap asymmetric aqueous supercapacitor activated carbon-NaMnO2. J. Power Sources 194, 1222 (2009)CrossRefGoogle Scholar
96.Qu, Q.T., Li, L., Tian, S., Guo, W.L., Wu, Y.P., Holze, R.A cheap asymmetric supercapacitor with high energy at high power activated carbon-K0.27MnO2·0.6H2O. J. Power Sources 195, 2789 (2010)CrossRefGoogle Scholar
97.Wang, Y.G., Xia, Y-Y.A new concept hybrid electrochemical surpercapacitor carbon LiMn2O4 aqueous system. Electrochem. Commun. 7, 1138 (2005)CrossRefGoogle Scholar
98.Moser, F., Athouël, L., Crosnier, O., Favier, F., Bélanger, D., Brousse, T.Transparent electrochemical capacitor based on electrodeposited MnO2 thin film electrodes and gel-type electrolyte. Electrochem. Commun. 11, 1259 (2009)CrossRefGoogle Scholar
99.Brousse, T., Taberna, P.L., Crosnier, O., Dugas, R., Guillemet, P., Scudeller, Y., Zhou, Y., Favier, F., Bélanger, D., Simon, P.Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. J. Power Sources 173, 633 (2007)CrossRefGoogle Scholar
100.Brousse, T., Toupin, M., Bélanger, D.A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte. J. Electrochem. Soc. 151, A614 (2004)CrossRefGoogle Scholar