Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T01:29:35.908Z Has data issue: false hasContentIssue false

Residual strain energy in composites containing particles

Published online by Cambridge University Press:  31 January 2011

Toshiaki Mizutani
Affiliation:
R/D Center, Toshiba Corporation, 1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi 210, Japan
Get access

Abstract

Selsing's formula for radial tension at the particle-matrix interface is extended into a general formula which includes the effects of the amount of dispersed particles. A relationship is derived between individual volumes of strained unit cells in the crystal lattices of the particles and of the surrounding matrix. These relationships are used to predict the effect of the particles (2H−TiB2, 2H−ZrB2, and t−WB) on their unit cells and on the unit cell of the surrounding 6H–SiC matrix. The precision of these predictions was 7.1% or better. Hence, in principle, it is possible to investigate the distributions of residual bulk stress/strain. Estimates of characterizing values of the three composite systems are attempted on the rough basis of the elastic constants of the SiC matrix, confirming the physical validity of this approach as a first approximation. Further, the residual bulk strain energies of the particles and the matrix are discussed in connection with the elastic term involved in the fracture energy of such composites.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.McMurtry, C. H., Boecker, W. D. G., Seshadri, S. G., Zanghi, J. S., and Garnier, J.E., Am. Ceram. Soc. Bull. 66 (2), 325329 (1987).Google Scholar
2.Jenkins, M. G., Salem, J. A., and Seshadri, S. G., J. Comp. Mater. 23 (1), 7791 (1989).CrossRefGoogle Scholar
3.Taya, M., Hayashi, S., Kobayashi, A. S., and Yoon, H. S., J. Am. Ceram. Soc. 73 (5), 13821391 (1990).Google Scholar
4.Kohsaka, S. and Koga, K., in Fine Ceramics (1990), Proc. of 8th Symp. on Basic Technology for Future Industries, Japan (1990), pp. 5969.Google Scholar
5.Mizutani, T. and Tsuge, A., J. Ceram. Soc. Jpn. 100 (8), 991997 (1992).Google Scholar
6.Evans, A. G., Philos. Mag. 22, 13271344 (1972).Google Scholar
7.Evans, A. G. and Langdon, T. G., Prog. Mater. Sci. 21 (3–4), 171441 (1976).Google Scholar
8.Green, D. J., Nicholson, P. S., and Embury, J.D., J. Mater. Sci. 14 (7), 16571661 (1979).CrossRefGoogle Scholar
9.Green, D. J., J. Am. Ceram. Soc. 66 (1), c.4 (1983).Google Scholar
10.Lawn, B. R., J. Am. Ceram. Soc. 66 (2), 8391 (1983).Google Scholar
11.Faber, K. T. and Evans, A. G., Acta Metall. 31 (4), 565576 (1983).Google Scholar
12.Wei, G. C. and Becher, P. F., J. Am. Ceram. Soc. 67 (8), 571574 (1984).Google Scholar
13.Budiansky, B., Amazigo, J.C., and Evans, A. G., J. Mech. Phys. Solids 36, 167187 (1988).Google Scholar
14.Magley, D. J., Winholtz, R. A., and Faber, K. T., J. Am. Ceram. Soc. 73 (6), 16411644 (1990).Google Scholar
15.Gu, W. H., Faber, K. T., and Steinbrech, R. W., Acta Metall. 40 (11), 31213128 (1992).Google Scholar
16.Shibata, S., Taya, M., Mori, T., and Mura, T., Acta Metall. 40 (11), 31413148 (1992).Google Scholar
17.Mizutani, T. and Tsuge, A., “Residual Strain in SiC Composites Containing Particulate MeB2,” Adv. Comp. Mater. 5 (3) (in press, 1995).Google Scholar
18.Weyl, D., Ber.deut.keram.Ges. 36 (10), 319324 (1959); Ceram. Abstr., 1960, June, p. 141j.Google Scholar
19.Eshelby, J. D., Proc. Royal Soc. A252, 561569 (1959).Google Scholar
20.Selsing, J., J. Am. Ceram. Soc. 44 (8) 419 (1961).CrossRefGoogle Scholar
21.Mori, T. and Tanaka, K., Acta Metall. 21 (5), 571574 (1973).Google Scholar
22.Prescott, J., Applied Elasticity (Longmans, Green and Co., London, 1924), pp. 326329.Google Scholar
23.Landau, L. D. and Lifshitz, E. M., Theory of Elasticity, 2nd English ed. (Pergamon Press, Oxford, 1970; translated by J.B. Sykes and W. H. Reid from Russian, Volume 7, Course of Theoretical Physics, Moscow, USSR, 1953), pp. 2021.Google Scholar
24.Murata, Y. and Smoak, R. H.Proc. Int. Symp. of Factors in Densification and Sintering of Oxide and Non-Oxide Ceramics 1978 Japan pp. 382399.Google Scholar
25.Draper, N. R. and Smith, H., Applied Regression Analysis (John Wiley & Sons, Inc., New York, 1966).Google Scholar
26.Chatteriee, S. and Price, B., Regression Analysis by Example (John Wiley & Sons, Inc., New York, 1966).Google Scholar
27.Edwards, Allen L., Introduction to Linear Regression and Correlation (W. H. Freeman and Co., San Francisco, CA, 1984).Google Scholar
28.Mandel, J., J. Quality Technol. 16 (1), 113 (1984).Google Scholar
29.Giddings, R. A., Johnson, C. A., Prochazka, S., and Charles, R. J., GE Company, Corporate R&D, “Fabrication and Properties of Sintered SiC,” Technical Information Series, Report No. April (1975).Google Scholar
30.Gulden, T. D., J. Am. Ceram. Soc. 52 (11), 273278 (1969).Google Scholar
31.Coppola, J. A., Srinivasan, M., Faber, K. T., and Smoak, R. H., Proc. Int. Symp. of Factors in Densification and Sintering of Oxide and Non-Oxide Ceramics, 1978, Japan, pp. 400417.Google Scholar
32.Carnahan, R. D., J. Am. Ceram. Soc. 51 (4), 223224 (1968).Google Scholar
33.Kotelnikov, R. B., Bashlykov, S. N., Galiakbarov, Z. G., and Kashtanov, A. I., Handbook of High Melting Point Materials (Metallugiya Press, Moscow, USSR 1969).Google Scholar
34.Lang, S. M., “Properties of High Temperature Ceramics and Cermets: Elasticity and Density at Room Temperature,” National Bureau of Standards Monograph 6 (March 1, 1960).Google Scholar
35. MCIC Report HB-07-Vol. 2/(Reprinted in July 1987) “Engineering Property Data on Selected Ceramics, Carbides,” Metals & Ceramics Information Center, Battelle, Columbus, OH.Google Scholar
36.Mizutani, T., Hayashi, M., and Tsuge, A., J. Ceram. Soc. Jpn., Int. Ed. 96, 211216 (1988).Google Scholar
37.Petrovic, J. J., Milewski, J. V., Rohr, D. L., and Gac, R. D., J. Mater. Sci. 20, 11671177 (1985).Google Scholar
38.Li, Z. and Bradt, R. C., J. Am. Ceram. Soc. 69 (12), 863866 (1986).Google Scholar