Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T03:24:08.907Z Has data issue: false hasContentIssue false

Role of Adhesive Interlayer in Transverse Fracture of Brittle Layer Structures

Published online by Cambridge University Press:  31 January 2011

Herzl Chai
Affiliation:
Department of Solid Mechanics, Materials and Structures Faculty of Engineering, Tel Aviv University, Israel 69978
Brian Lawn
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

The role of a soft adhesive interlayer in determining critical conditions for fracture in brittle layer structures from indentation with hard spheres is investigated. A model transparent trilayer system consisting of a glass plate overlayer (thickness range 80 μm to 2 mm) joined to a glass plate underlayer (thickness 5.6 mm) by an epoxy adhesive (thickness range 5 μm to 8 mm), loaded at its top surface with a hard tungsten carbide sphere (radius 3.96 mm), facilitates in situ observations of the crack initiation and propagation. Whereas in bulk glass fracture occurs by inner Hertzian cone cracking immediately outside the contact circle, the soft adhesive allows the overlayer glass plate to flex, initiating additional transverse fracture modes within the overlayer: downward-extending outer ring cracks at the top glass surface well outside the contact, and upward-extending radial cracks at the bottom glass surface (i.e., at the glass/adhesive interface) on median planes containing the contact axis. The top and bottom surfaces of the glass overlayers are given selective prebonding abrasion treatments to ensure uniform flaw states, so as to enable accurate comparisons between crack initiation conditions. The adhesive bonding is strong enough to preclude delamination in our layer system. Of the three transverse crack systems, the subsurface radials generates most easily in systems with large adhesive thicknesses (and smaller overlayer thicknesses). Semi-empirical relations are specified for the dependence of the critical loads for radial and ring cracking on adhesive as well as overlayer thickness, based on the assumption that crack initiation occurs when the maximum tensile stresses in the flexing glass plate exceed the bulk strength of the (abraded) glass. Coupled with the traditional “Auerbach's law” for cone crack initiation, these relations afford a basis for the construction of simple design diagrams for brittle layer systems joined by adhesives.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gordon, J.E., The New Science of Strong Materials (Penguin, Harmondsworth, United Kingdom, 1968).Google Scholar
2.Clegg, W.J., Kendall, K., Alford, N.M., Button, T.W., and Birchall, J.D., Nature 347, 455 (1991).CrossRefGoogle Scholar
3.Folsom, C.A., Zok, F.W., and Lange, F.F., J. Am. Ceram. Soc. 77, 689 (1994).CrossRefGoogle Scholar
4.Folsom, C.A., Zok, F.W., and Lange, F.F., J. Am. Ceram. Soc. 77, 2081 (1994).CrossRefGoogle Scholar
5.Swain, M.V. and Mencik, J., Thin Solid Films 253, 204 (1994).CrossRefGoogle Scholar
6.Diao, D.F., Kato, K., and Hokkirigawa, K., Trans ASME J. Tribology 116, 860 (1994).CrossRefGoogle Scholar
7.An, L., Chan, H.M., Padture, N.P., and Lawn, B.R., J. Mater. Res. 11, 204 (1996).CrossRefGoogle Scholar
8.Liu, H., Lawn, B.R., and Hsu, S.M., J. Am. Ceram. Soc. 79, 1009 (1996).CrossRefGoogle Scholar
9.Pajares, A., Wei, J., Lawn, B.R., Padture, N.P., and Berndt, C.C., Mater. Sci. Eng. A 208, 158 (1996).CrossRefGoogle Scholar
10.Wuttiphan, S., Lawn, B.R., and Padture, N.P., J. Am. Ceram. Soc. 79, 634 (1996).CrossRefGoogle Scholar
11.Fischer-Cripps, A.C., Lawn, B.R., Pajares, A., and Wei, L., J. Am. Ceram. Soc. 79, 2619 (1996).CrossRefGoogle Scholar
12.Lardner, T.J., Ritter, J.E., and Zhu, G-Q., J. Am. Ceram. Soc. 80, 1851 (1997).CrossRefGoogle Scholar
13.Chan, H.M., Ann. Rev. Mater. Sci. 27, 249 (1997).CrossRefGoogle Scholar
14.Lee, K.S., Wuttiphan, S., Hu, X.Z., Lee, S.K., and Lawn, B.R., J. Am. Ceram. Soc. 81, 571 (1998).CrossRefGoogle Scholar
15.Lee, K.S., Lee, S.K., Lawn, B.R., and Kim, D.K., J. Am. Ceram. Soc. 81, 2394 (1998).CrossRefGoogle Scholar
16.Jung, Y.G., Wuttiphan, S., Peterson, I.M., and Lawn, B.R., J. Dent. Res. 78, 887 (1999).CrossRefGoogle Scholar
17.Lawn, B.R., J. Am. Ceram. Soc. 81, 1977 (1998).CrossRefGoogle Scholar
18.Pajares, A., Wei, L., Lawn, B.R., and Berndt, C.C., J. Am. Ceram. Soc. 79, 1907 (1996).CrossRefGoogle Scholar
19.Chai, H. and Lawn, B.R., J. Mater. Res. 14, 3805 (1999).CrossRefGoogle Scholar
20.Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells (McGraw-Hill, New York, 1959), Chap. 8.Google Scholar
21.Frank, F.C. and Lawn, B.R., Proc. Roy. Soc. Lond. A 299, 291 (1967).Google Scholar
22.Lawn, B.R. and Wilshaw, T.R., J. Mater. Sci. 10, 1049 (1975).CrossRefGoogle Scholar
23.Lawn, B.R., Fracture of Brittle Solids (Cambridge University Press, Cambridge, United Kingdom, 1993), Chap. 8.CrossRefGoogle Scholar
24.Wiederhorn, S.M., J. Am. Ceram. Soc. 52, 99 (1969).CrossRefGoogle Scholar
25.Lawn, B.R. and Evans, A.G., J. Mater. Sci. 12, 2195 (1977).CrossRefGoogle Scholar
26.Lawn, B.R. and Marshall, D.B., J. Am. Ceram. Soc. 62, 347 (1979).CrossRefGoogle Scholar
27.Shaw, M.C., Marshall, D.B., Dadkhah, M.S., and Evans, A.G., Acta Metall. 41, 3311 (1993).CrossRefGoogle Scholar
28.Zhao, H., Hu, X.Z., Bush, M.B., and Lawn, B.R., J. Mater. Res. 15, 676 (2000).CrossRefGoogle Scholar
29.Komvopolous, K., ASME J. Tribology 111, 340 (1989).Google Scholar
30.Montmitonnet, P., Edinger, M.L., and Felder, E., ASME J. Tribology 115, 15 (1993).CrossRefGoogle Scholar
31.Bennison, S.J., Jagota, A., and Smith, C.A., J. Am. Ceram. Soc. 82, 1761 (1999).CrossRefGoogle Scholar