Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-02T19:00:09.425Z Has data issue: false hasContentIssue false

Scanning tunneling microscope/scanning tunneling spectroscopy investigation of the structural modulation on the surface of cleaved Bi2Sr2CaCu2Oy, single crystal

Published online by Cambridge University Press:  03 March 2011

Wu Ting
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center (ISTEC), 1-10-13 Shinonome, Koto-ku, Tokyo 135, Japan
R. Itti
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center (ISTEC), 1-10-13 Shinonome, Koto-ku, Tokyo 135, Japan
Y. Ishimaru
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center (ISTEC), 1-10-13 Shinonome, Koto-ku, Tokyo 135, Japan
G. Gu
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center (ISTEC), 1-10-13 Shinonome, Koto-ku, Tokyo 135, Japan
Y. Enomoto
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center (ISTEC), 1-10-13 Shinonome, Koto-ku, Tokyo 135, Japan
N. Koshizuka
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center (ISTEC), 1-10-13 Shinonome, Koto-ku, Tokyo 135, Japan
S. Tanaka
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center (ISTEC), 1-10-13 Shinonome, Koto-ku, Tokyo 135, Japan
Get access

Abstract

The surface of cleaved Bi2Sr2 CaCu2O3 (Bi2212) single crystals has been studied by means of scanning tunneling microscope (STM) and scanning tunneling spectroscopy (STS) at room temperature in ultrahigh vacuum. We obtain atomic images of the BiO surface using logarithmic current mode and conventional mode. It is demonstrated that the Bi atoms in the BiO plane are not missing. Some Bi atoms are depressed down below the BiO surface. STS obtained at different places of the surface shows more or less the same feature, indicating that local electronic density of states does not change much due to the depression or the well-known structural modulation. The possible origins of the variation in the period of the structural modulation in the BiO plane of cleaved Bi2212 single crystals extracted from STM images are also studied.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kirk, M. D., Nogami, J., Baski, A. A., Mitzi, D. B., Kapitulnik, A., Geballe, T. H., and Quate, C. F., Science 242, 1673 (1988).Google Scholar
2Shih, C. K., Feenstra, R. M., Kirtley, J. R., and Chandrashekhar, G. V., Phys. Rev. B 40, 2682 (1989).CrossRefGoogle Scholar
3Wu, X. L., Zhang, Z., and Lieber, C. M., Science 248, 1211 (1990).CrossRefGoogle Scholar
4Wu, X. L., Wang, Y. L., Zhang, Z., and Lieber, C. M., Phys. Rev. B 43, 8729 (1991).CrossRefGoogle Scholar
5Shih, C. K., Feenstra, R. M., and Chandrashekhar, G. V., Phys. Rev. B 43, 7913 (1991).Google Scholar
6Samanta, S. B., Dutta, P. K., Awana, V.P. S., Gmelin, E., and Narlikar, A. V., Physica C 178, 171 (1991).Google Scholar
7Ikeda, K., Takamuku, K., Yamaguchi, K., Itti, R., and Koshizuka, N., J. Mater. Res. 7, 1060 (1992).Google Scholar
8Zhang, Z. and Lieber, C. M., Phys. Rev. B 46, 5845 (1992).Google Scholar
9Luo, Y. S., Yang, Y. N., and Weaver, J. H., Phys. Rev. B 46, 1114 (1992).CrossRefGoogle Scholar
10Ikeda, K., Takamuku, K., Itti, R., and Koshizuka, N., Surf. Sci. 290, 207 (1993).Google Scholar
11Noue, A. I., Mukaida, H., Nakao, M. A., and Yoshizaki, R., unpublished.Google Scholar
12Wang, C., Giambattista, B., Slough, C. G., Coleman, R. V., and Subramanian, M. A., Phys. Rev. B 42, 8890 (1990).Google Scholar
13Hasegawa, T., Nantoh, M., and Kitasawa, K., Jpn. J. Appl. Phys. 30, L276 (1991).CrossRefGoogle Scholar
14See, for instance, Gao, Y., Lee, P., Coppens, P., Subramanian, M. A., and Sleight, A. W., Science, 241, 954 (1988).CrossRefGoogle Scholar
15Gu, G. D., Takamuku, K., Koshizuka, N., and Tanaka, S., J. Cryst. Growth 130, 325 (1993).Google Scholar
16Krakauer, H. and Pickett, W. E., Phys. Rev. Lett. 60, 1665 (1988).CrossRefGoogle Scholar
17Hybertsen, M. S. and Mattheiss, L. F., Phys. Rev. Lett. 60, 1661 (1988).Google Scholar
18Massidda, S., Yu, J. J., and Freeman, A. J., Physica C 152, 251 (1988).Google Scholar
19Sunshine, S. A., Siegrist, T., Schneemeyer, L. F., Murphy, D. W., Cava, R. J., Batlogg, B., van Dover, R. B., Fleming, R. M., Glarum, S. H., Nakahara, S., Farrow, R., Krajewski, J. J., Zahurak, S. M., Waszczak, J. V., Marshall, J. H., Rupp, L. W. Jr., and Peck, W. F., Phys. Rev. B 38, 893 (1988).Google Scholar
20Zandbergen, H. W., Groen, P., van Tendeloo, G., van Landuyt, J., and Amelinckx, S., Solid State Commun. 66, 397 (1988).Google Scholar
21Ikeda, K., Takamuku, K., Itti, R., and Koshizuka, N., J. Vac. Sci. Technol. B 10, 2311 (1992).CrossRefGoogle Scholar
22Strocio, J. A., Feenstra, R. M., and Fein, A. P., Phys. Rev. Lett. 57, 2579 (1986).CrossRefGoogle Scholar
23Kuk, Y. and Silverman, P. J., Rev. Sci. Instrum. 60, 165 (1989).CrossRefGoogle Scholar
24Pethica, J. B., Phys. Rev. Lett. 57, 3235 (1986).Google Scholar
25Fuchs, H. and Tosatti, E., Europhys. Lett. 3, 745 (1987).Google Scholar
26Soler, J. M., Baro, A. M., Garcia, N., and Rohrer, H., Phys. Rev. Lett. 57, 444 (1986).Google Scholar
27Yamamoto, A., Onoda, M., Takayama-Muromachi, E., and Izumi, F., Phys. Rev. B 42, 4228 (1990).CrossRefGoogle Scholar