Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T02:14:15.306Z Has data issue: false hasContentIssue false

Sedimentation in flocculating colloidal suspensions

Published online by Cambridge University Press:  03 March 2011

Jeffrey S. Abel
Affiliation:
School of Ceramic Engineering and Sciences, New York State College of Ceramics at Alfred University, Alfred, New York 14802
Gregory C. Stangle
Affiliation:
School of Ceramic Engineering and Sciences, New York State College of Ceramics at Alfred University, Alfred, New York 14802
Christopher H. Schilling
Affiliation:
Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011
Ilhan A. Aksay
Affiliation:
Department of Chemical Engineering and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544
Get access

Abstract

A combined experimental and theoretical investigation of the sedimentation of unstable colloidal ceramic suspensions has been performed. Suspensions containing submicron-sized α-Al2O3 particles were prepared at various pH values in order to modify suspension stability. Particle volume fraction during sedimentation was determined as a function of position and time by gamma-ray densitometry. A population balance model was developed to account for various coagulation and decoagulation mechanisms that affect sedimentation behavior in flocculating suspensions. Model predictions were then compared with experimental measurements, in order to establish the validity of the theoretical model.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Reed, J. S., Introduction to Ceramic Engineering (John Wiley, New York, 1988).Google Scholar
2Auzerais, F. M., Jackson, R., Russel, W. B., and Murphy, W. F., J. Fluid Mech. 221, 613639 (1990).CrossRefGoogle Scholar
3Al-Naafa, M. A. and Selim, M. S., Can. J. Chem. Eng. 67, 253264 (1989).CrossRefGoogle Scholar
4Russel, W. B., The Dynamics of Colloidal Systems (University of Wisconsin Press, Madison, WI, 1987).Google Scholar
5Lange, F. F., J. Am. Ceram. Soc. 72 (1), 315 (1989).CrossRefGoogle Scholar
6Schilling, C. H., Shih, W-H., and Aksay, I. A., in Ceramic Powder Science IV, edited by Hiranno, S., Messing, G. L., and Hausner, H. (American Ceramic Society, Westerville, OH, 1991), Vol. 22, pp. 307321.Google Scholar
7Bergström, L., Schilling, C. H., and Aksay, I. A, J. Am. Ceram. Soc. (1993, in press).Google Scholar
8Batchelor, G. K., J. Fluid Mech. 52 (2), 245268 (1972).CrossRefGoogle Scholar
9Davis, R. H. and Birdsell, K. H., A. I.Ch. E. J. 34 (1), 123129 (1988).CrossRefGoogle Scholar
10Shih, Y. T., Gidaspow, D., and Wasan, D. T., Powder Technol. 50, 201215 (1987).CrossRefGoogle Scholar
11Batchelor, G. K., J. Fluid Mech. 119, 379408 (1982).CrossRefGoogle Scholar
12Batchelor, G. K. and Wen, C-S., J. Fluid Mech. 124, 495528 (1982).CrossRefGoogle Scholar
13Somasundaran, P., Fine Particles Processing, edited by Somasundaran, P. (American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., New York, 1980), pp. 947976.Google Scholar
14Suzuki, A. and Kashiki, I., Ind. Eng. Chem. Res. 26, 14641548 (1987).CrossRefGoogle Scholar
15Mason, S. G., J. Colloid Interf. Sci. 58 (2), 275285 (1977).CrossRefGoogle Scholar
16Harding, R. D., J. Colloid Interf. Sci. 40 (2), 164173 (1972).CrossRefGoogle Scholar
17Jeffery, G. C. and Ottewill, R. H., Colloid Polym. Sci. 268, 179189 (1990).CrossRefGoogle Scholar
18Xu, Z. and Yoon, R-H., J. Colloid Interf. Sci. 134 (2), 427434 (1990).CrossRefGoogle Scholar
19Davis, K. E., Russel, W. B., and Glantschnig, W. J., J. Chem. Soc. Faraday Trans. 83 (3), 411424 (1991).CrossRefGoogle Scholar
20Auzerais, F. M., Jackson, R., and Russel, W. B., J. Fluid Mech. 195, 437462 (1988).CrossRefGoogle Scholar
21Buscall, R., Colloid Surf. 43, 3353 (1990).CrossRefGoogle Scholar
22Schilling, C. H. and Aksay, I. A., Transactions of the Canadian University–Industry Council on Advanced Ceramics–Third Workshop, February 24–25, 1987, Montreal, Quebec.Google Scholar
23Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena (John Wiley, New York, 1960).Google Scholar
24Koh, P. T. L., Andrews, J. R. G, and Uhlherr, P. H. T., Chem. Eng. Sci. 42 (2), 353362 (1987).CrossRefGoogle Scholar
25Froment, G. F. and Bischoff, K. B., Chemical Reactor Analysis and Design (John Wiley, New York, 1979).Google Scholar
26Clarke, J. H., Clarke, A. N., and Wilson, D. J., Sep. Sci. Tech. 13, 767789 (1978).CrossRefGoogle Scholar
27Vigil, R. D. and Ziff, R. M., J. Colloid Interf. Sci. 133 (1), 257264 (1989).CrossRefGoogle Scholar
28Batchelor, G. K. and Green, J. T., J. Fluid Mech. 56 (3), 401427 (1972).CrossRefGoogle Scholar
29Beenakker, C. W. J. and Mazur, P., Phys. Lett. 91 (6), 290291 (1982).CrossRefGoogle Scholar
30Valioulis, I. A. and List, E. J., Adv. Colloid Interf. Sci. 20, 120 (1984).CrossRefGoogle Scholar
31Parfitt, G. D. and Peacock, J., Surf. Colloid Sci. 10, 163226 (1978).CrossRefGoogle Scholar
32Molski, A., Colloid Polyra. Sci. 267, 371375 (1989).CrossRefGoogle Scholar
33Carnahan, B., Luther, H. A., and Wilkes, J. O., Applied Numerical Methods (John Wiley, New York, 1969).Google Scholar