Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T02:17:16.740Z Has data issue: false hasContentIssue false

Self-propagating high-temperature synthesis of functionally graded materials as thermal protection systems for high-temperature applications

Published online by Cambridge University Press:  31 January 2011

N. Bertolino
Affiliation:
Institute for Energetics and Interfases-National Research Council (IENI-CNR), Via Cozzi 53, 20125 Milano, Italy
M. Monagheddu
Affiliation:
Institute for Energetics and Interfases-National Research Council (IENI-CNR), Via Cozzi 53, 20125 Milano, Italy
A. Tacca
Affiliation:
Institute for Energetics and Interfases-National Research Council (IENI-CNR), Via Cozzi 53, 20125 Milano, Italy
P. Giuliani
Affiliation:
Institute for Energetics and Interfases-National Research Council (IENI-CNR), Via Cozzi 53, 20125 Milano, Italy
C. Zanotti
Affiliation:
Institute for Energetics and Interfases-National Research Council (IENI-CNR), Via Cozzi 53, 20125 Milano, Italy
F. Maglia
Affiliation:
Dipartimento di Chimica fisica, IENI-CNR, Università di Pavia, Viale Taramelli 16, 27100 Pavia, Italy
U. Anselmi Tamburini
Affiliation:
Dipartimento di Chimica fisica, IENI-CNR, Università di Pavia, Viale Taramelli 16, 27100 Pavia, Italy
Get access

Abstract

Self-propagating high-temperature synthesis was used to prepare boride-based functionally graded materials (FGMs) as thermal barriers for space re-entry vehicles. FGMs are characterized by inhomogeneous spatial composition, resulting in different spatial characteristics. In this work, the FGMs were composed of a ceramic [i.e., MB2 (M = Ti, Zr, Hf)] and a metallic (i.e., NiAl) side, joined together by composite layers of graded stoichiometries of the two components. Thus, in the same material, the boride end gives thermal insulation, while the intermetallic end offers an easy junction to the structure of the space aircraft. The prepared FGMs showed good adhesion between the layers and global compactness after preparation and thermal tests. The microhardness along the samples was measured, and their insulating capabilities were evaluated.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Merzhanov, A.G. and Borovinskaya, I.P., Dokl. Akad. Nauk. SSSR (Chem) 204, 366 (1972, in English).Google Scholar
Borovinskaya, I.P., Merzhanov, A.G., Novikov, I.P., and Filonenko, A.K., Combust, Explos. Shock Waves 10, 2 (1974).CrossRefGoogle Scholar
Merzhanov, A.G., Filonenko, A.K., and Borovinskaya, I.P., Dokl. Akad. Nauk. SSSR (Chem) 208, 892 (1973, in English).Google Scholar
Merzhanov, A.G., Karyuk, G.G., Borovinskaya, I.P., Prokudina, V.K., and Dyad’ko, E.G., Sov. Powder Metall. Met. Ceram. 20, 709 (1981).CrossRefGoogle Scholar
Sarkisian, A.R., Dolukhhanyan, S.K., and Borovinskaya, I.P., Sov. Powder Metall. Met. Ceram. 17, 424 (1978).CrossRefGoogle Scholar
Niino, M., Hirai, T., and R.Watanabe, J. Jpn. Soc. Comp. Mater. 13, 257 (1987).CrossRefGoogle Scholar
Neubrand, A. and Rödel, J., Z. Metallkd. 88, 358 (1997, in English).Google Scholar
Shepard, L.M., Am. Ceram. Soc. Bull. 71, 617 (1992).Google Scholar
Ford, R.G., Mater. Processing Rep. 7(3–4), 1 (1992).Google Scholar
Proceedings of the First International Symposium-FGM ’90, edited by Yamanouchi, M., Koizumi, M., Hirai, T., and Shiota, I., (The Society of non-traditional Science and Technology, Sendai, Japan, 1990).Google Scholar
Munir, Z.A. and Holt, J. B., Combustion and Plasma Synthesis of High Temperature Materials (VCH Publishers, NY, 1990).Google Scholar
Atarishiya, K., Kurokawa, K., and Tadao, N., Ceram. Eng. Soc. Proc. 13(7–8), 400 (1992).CrossRefGoogle Scholar
Williams, S.D., Curry, D.M., Chao, D.C., and Pham, V.T., J. Thermphys. Heat Trans. 9(3), 478 (1995)CrossRefGoogle Scholar
Xuanhui, Q., Baiyun, H., Changming, L., Shiqi, C., Dalin, F., and Shaohua, O., J. Cent.–South Inst. Min. Metall. 24, 505 (1993).Google Scholar
Zhenling, Y., Runzhang, Y., and Xiaoxing, Z., Int. J. Self-Propag. High-Temp. Synth. 1, 490 (1992).Google Scholar
Yuan, R.Z., Fu, Z.Y., Munir, Z.A., Zhou, X.X., and Yang, Z.L., J. Mater. Sci. Proc. 1(3), 153 (1993).Google Scholar
Fu, Z.Y., Yuan, R.Z., Munir, Z.A., and Yang, Z.L., Int. J. Self-Propag. High-Temp. Synth. 1(1), 119 (1992).Google Scholar
Dunmead, S.D., Munir, Z.A., and Holt, J.B., Int. J. Self-Propag. High-Temp. Synth. 1(1), 22 (1992).Google Scholar
Zhang, X-H., Han, J-C., Du, S-Y., and Wood, J.V., J. Mater. Sci. 35, 1925 (2000).CrossRefGoogle Scholar
Dumont, A-L., Bonnet, J-P., Chartier, T., and Ferreira, J.M.F., J. Eur. Ceram. Soc. 21, 2353 (2001).CrossRefGoogle Scholar
Shon, I-J. and Munir, Z.A., J. Am. Ceram. Soc. 81, 3243 (1998).CrossRefGoogle Scholar
Moore, J.J. and Feng, H.J., Prog. Mater. Sci. 39, 275 (1995).CrossRefGoogle Scholar
Smithells Metals Reference Book, 7th ed., edited by Brandes, E.A., Brook, G.B. (Butterworth-Heinemann, Oxford, U.K., 1992).Google Scholar
HSC Chemistry for Windows—Chemical Reaction and Equilibrium Software, Outokumpu Research Oy, Pori, Finland, 1999.Google Scholar
JCPDS Powder Diffraction Files (International Center for Diffraction Data, Swarthmore, PA, 2001).Google Scholar
Makino, A., Progress in Energy and Combustion Science 27, 1 (2001).CrossRefGoogle Scholar
Munir, Z.A. and Anselmi-Tamburini, U., Mater. Sci. Rep. 3, 277 (1989).CrossRefGoogle Scholar
Hirano, T., Teraki, J., and Yamada, T., in Proceedings of the First International Symposium-FGM ’90, edited by Yamanouchi, M., Koizumi, M., Hirai, T., and Shiota, I. (The Society of nontraditional Science and Technology, Sendai, Japan, 1990), p. 5.Google Scholar
Munir, Z.A., J. Mater. Synth. Process. 1, 387 (1993).Google Scholar
Goetzel, G.C. and Lavendel, H.W., in Metals for the Space Age, edited by Benesovisky, F. (Plansee Proceedings, Reutte, Austria: Metallwerk Plansee, 1965), p. 149162.Google Scholar
Cutler, R.A., Engineered Materials Handbook, edited by Schneider, S.J. (ASM International, Materials Park, OH, 1991), Vol. 4, p. 787.Google Scholar