Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T13:22:37.917Z Has data issue: false hasContentIssue false

Sensitizing effect of Yb3+ on near-infrared fluorescence emission of Cr4+-doped calcium aluminate glasses

Published online by Cambridge University Press:  31 January 2011

Yong Gyu Choi*
Affiliation:
Telecommunication Basic Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Yusong P.O. Box 106, Taejon 305-600, Korea
Kyong Hon Kim
Affiliation:
Telecommunication Basic Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Yusong P.O. Box 106, Taejon 305-600, Korea
Yong Seop Han
Affiliation:
Photonic Glasses Laboratory, Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Korea
Jong Heo
Affiliation:
Photonic Glasses Laboratory, Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Korea
*
a)Address all correspondence to this author.
Get access

Abstract

We have demonstrated that an efficient energy transfer takes place from Yb3+ to Cr4+ in calcium aluminate glasses. Yb3+ improves excitation efficiency at around 980 nm, enhancing emission intensity of Cr4+ fluorescence at 1.2–1.6 μm. Nonradiative energy transfer via electric dipole–dipole interaction between ytterbium and chromium ions was found to be dominant over radiative Yb3+ → Cr4+ energy transfer. A diffusionlimited energy transfer mechanism well explains the decay behavior of Yb3+/Cr4+- codoped glasses. This codoping scheme may be applicable to other Cr4+-containing crystals and glasses.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Choi, Y.G. and Heo, J., J. Non-Cryst. Solids 217, 199 (1997).CrossRefGoogle Scholar
2.Lines, M.E., MacChesney, J.B., Lyons, K.B., Bruce, A.J., Miller, A.E., and Nassau, K., J. Non-Cryst. Solids 107, 251 (1989).CrossRefGoogle Scholar
3.Onoda, G.Y. Jr, and Brown, S.D., J. Am. Ceram. Soc. 53, 311 (1970).CrossRefGoogle Scholar
4.Uhlmann, E.V., Weinberg, M.C., Kreidl, N.J., and Goktas, A.A., J. Am. Ceram. Soc. 76, 449 (1994).CrossRefGoogle Scholar
5.Cerqua-Richardson, K., Peng, B., and Izumitani, T., OSA Proc. Adv. Solid-State Lasers 13, 52 (1992).Google Scholar
6.Munin, E., Villaverde, A.B., Bass, M., and Cerqua-Richardson, K., J. Phys. Chem. Solids 58, 51 (1997).CrossRefGoogle Scholar
7.Murata, T., Torisaka, M., Takebe, H., and Morinaga, K., J. Non-Cryst. Solids 220, 139 (1997).CrossRefGoogle Scholar
8.Weber, M.J., J. Appl. Phys. 44, 4058 (1973).CrossRefGoogle Scholar
9.Burshtein, Z., Blau, P., Kalisky, Y., Shimony, Y., and Kokta, M.R., IEEE J. Quantum Electron. 34, 292 (1998).CrossRefGoogle Scholar
10.Mikhailov, V.P., Zhavoronkov, N.I., Kuleshov, N.V., Avtukh, A.S., and Shcherbitsky, V.G., Opt. Quantum Electron. 27, 767 (1995).CrossRefGoogle Scholar
11.Takebe, H., Murata, T., and Morinaga, K., J. Am. Ceram. Soc. 79, 681 (1996).CrossRefGoogle Scholar
12.Bondar, I.A., Burshtein, A.I., Krutikov, A.V., Mezentseva, L.P., Osiko, V.V., Sakun, V.P., Smirnov, V.A., and Shcherbakov, I.A., Sov. Phys. JETP 54, 45 (1981).Google Scholar
13.Dexter, D.L., J. Chem. Phys. 21, 836 (1953).CrossRefGoogle Scholar
14.Yokota, M. and Tanimoto, O., J. Phys. Soc. Jpn. 22, 779 (1967).CrossRefGoogle Scholar
15.Weber, M.J., Phys. Rev. B4, 2932 (1971).CrossRefGoogle Scholar
16.Wu, X., Yuan, H., Yen, W.M., and Aitken, B.G., J. Lumin. 66&67, 285 (1996).Google Scholar