Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T17:26:33.553Z Has data issue: false hasContentIssue false

Si-doped high-energy Li1.2Mn0.54Ni0.13Co0.13O2 cathode with improved capacity for lithium-ion batteries

Published online by Cambridge University Press:  07 December 2018

Leah Nation
Affiliation:
School of Engineering, Brown University, Providence, Rhode Island 02912, USA
Yan Wu*
Affiliation:
Global Research and Development, General Motors, Warren, Michigan 48092, USA
Christine James
Affiliation:
Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
Yue Qi
Affiliation:
Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
Bob R. Powell
Affiliation:
Global Research and Development, General Motors, Warren, Michigan 48092, USA
Brian W. Sheldon*
Affiliation:
School of Engineering, Brown University, Providence, Rhode Island 02912, USA
*
a)Address all correspondence to these authors. e-mail: yan.wu@essinc.com
Get access

Abstract

Li[Lix/3Mn2x/3M1−x]O2 (M = Ni, Mn, Co) (HE-NMC) materials, which can be expressed as a combination of trigonal LiTMO2 (TM = transition metal) and monoclinic Li2MnO3 phases, are of great interest as high capacity cathodes for lithium-ion batteries. However, structural stability prevents their commercial adoption. To address this, Si doping was applied, resulting in improved stability. Raman and differential capacity analyses suggest that silicon doping improves the structural stability during electrochemical cycling. Furthermore, the doped material exhibits a 10% higher capacity relative to the control. The superior capacity likely results from the increased lattice parameters as determined by X-ray diffraction (XRD) and the lower resistance during the first cycle found by impedance and direct current resistance (DCR) measurements. Density functional theory (DFT) predictions suggest that the observed lattice expansion is an indication of increased oxygen vacancy concentration and may be due to the Si doping.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Manthiram, A., Knight, J.C., Myung, S.T., Oh, S.M., and Sun, Y.K.: Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives. Adv. Energy Mater. 6, 1501010 (2016).CrossRefGoogle Scholar
Koga, H., Croguennec, L., Ménétrier, M., Douhil, K., Belin, S., Bourgeois, L., Suard, E., Weill, F., and Delmas, C.: Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2. J. Electrochem. Soc. 160, A786 (2013).CrossRefGoogle Scholar
Wu, Y., Ma, C., Yang, J., Li, Z., Allard, L.F., Liang, C., and Chi, M.: Probing the initiation of voltage decay in Li-rich layered cathode materials at atomic scale. J. Mater. Chem. A 3, 5385 (2015).CrossRefGoogle Scholar
Oh, P., Myeong, S., Cho, W., Lee, M.J., Ko, M., Jeong, H.Y., and Cho, J.: Superior long-term energy retention and volumetric energy density for Li-rich cathode materials. Nano Lett. 14, 5965 (2014).CrossRefGoogle ScholarPubMed
Li, Y., Bettge, M., Polzin, B.J., Zhu, Y., Balasubramanian, M., and Abraham, D.P.: Understanding long-term cycling performance of Li1.2Ni0.15Mn0.55Co0.1O2-graphite lithium-ion cells. J. Electrochem. Soc. 160, A3006 (2013).CrossRefGoogle Scholar
Zheng, J., Xu, P., Gu, M., Xiao, J., Browning, N.D., Yan, P., Wang, C., and Zhang, J-G.: Structural and chemical evolution of Li- and Mn-rich layered cathode material. Chem. Mater. 27, 1381 (2015).CrossRefGoogle Scholar
Qian, D., Xu, B., Chi, M., and Meng, Y.S.: Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides. Phys. Chem. Chem. Phys. 16, 14665 (2014).CrossRefGoogle ScholarPubMed
Qiao, Q-Q., Qin, L., Li, G-R., Wang, Y-L., and Gao, X-P.: Sn-stabilized Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as a cathode for advanced lithium-ion batteries. J. Mater. Chem. A 3, 17627 (2015).CrossRefGoogle Scholar
Iftekhar, M., Drewett, N.E., Armstrong, A.R., Hesp, D., Braga, F., Ahmed, S., and Hardwick, L.J.: Characterization of aluminum doped lithium-manganese rich composites for higher rate lithium-ion cathodes. J. Electrochem. Soc. 161, A2109 (2014).CrossRefGoogle Scholar
Song, B., Zhou, C., Wang, H., Liu, H., Liu, Z., Lai, M.O., and Lu, L.: Advances in sustain stable voltage of Cr-doped Li-rich layered cathodes for lithium ion batteries. J. Electrochem. Soc. 161, A1723 (2014).CrossRefGoogle Scholar
Wang, Y.X., Shang, K.H., He, W., Ai, X.P., Cao, Y.L., and Yang, H.X.: Magnesium-doped Li[Li0.2Co0.13Ni0.13Mn0.54]O2 for lithium-ion battery cathode with enhanced cycling stability and rate capability. ACS Appl. Mater. Interfaces 7, 13014 (2015).CrossRefGoogle ScholarPubMed
Li, Q., Li, G., Fu, C., Luo, D., Fan, J., and Li, L.: K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: A novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 10330 (2014).CrossRefGoogle Scholar
Li, L., Song, B.H., Chang, Y.L., Xia, H., Yang, J.R., Lee, K.S., and Lu, L.: Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. J. Power Sources 283, 162 (2015).CrossRefGoogle Scholar
Ma, Q., Li, R., Zheng, R., Liu, Y., Huo, H., and Dai, C.: Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes via selenium doping to stabilize oxygen. J. Power Sources 331, 112 (2016).CrossRefGoogle Scholar
Lu, C., Yang, S., Wu, H., Zhang, Y., Yang, X., and Liang, T.: Enhanced electrochemical performance of Li-rich Li1.2Mn0.52Co0.08Ni0.2O2 cathode materials for Li-ion batteries by vanadium doping. Electrochim. Acta 209, 448 (2016).CrossRefGoogle Scholar
Yu, R., Wang, G., Liu, M., Zhang, X., Wang, X., Shu, H., Yang, X., and Huang, W.: Mitigating voltage and capacity fading of lithium-rich layered cathodes by lanthanum doping. J. Power Sources 335, 65 (2016).CrossRefGoogle Scholar
Chen, C., Geng, T., Du, C., Zuo, P., Cheng, X., Ma, Y., and Yin, G.: Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries. J. Power Sources 331, 91 (2016).CrossRefGoogle Scholar
Zhao, E., Liu, X., Zhao, H., Xiao, X., and Hu, Z.: Ion conducting Li2SiO3-coated lithium-rich layered oxide exhibiting high rate capability and low polarization. Chem. Commun. 51, 9093 (2015).CrossRefGoogle ScholarPubMed
Wang, Z., Liu, E., Guo, L., Shi, C., He, C., Li, J., and Zhao, N.: Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating. Surf. Coat. Technol. 235, 570 (2013).CrossRefGoogle Scholar
Zhang, X., Belharouak, I., Li, L., Lei, Y., Elam, J.W., Nie, A., Chen, X., Yassar, R.S., and Axelbaum, R.L.: Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv. Energy Mater. 3, 1299 (2013).CrossRefGoogle Scholar
Yang, X., Wang, D., Yu, R., Bai, Y., Shu, H., Ge, L., Guo, H., Wei, Q., Liu, L., and Wang, X.: Suppressed capacity/voltage fading of high-capacity lithium-rich layered materials via the design of heterogeneous distribution in the composition. J. Mater. Chem. A 2, 3899 (2014).CrossRefGoogle Scholar
Hu, E., Lyu, Y., Xin, H.L., Liu, J., Han, L., Bak, S-M., Bai, J., Yu, X., Li, H., and Yang, X.Q.: Explore the effects of microstructural defects on voltage fade of Li- and Mn-rich cathodes. Nano Lett. 16, 5999 (2016).CrossRefGoogle ScholarPubMed
Li, J., Doig, R., Liu, H., Botton, G.A., and Dahn, J.R.: The effect of interdiffusion on the properties of lithium-rich core–shell cathodes. J. Electrochem. Soc. 163, A2841 (2016).CrossRefGoogle Scholar
Verde, M.G., Liu, H., Carroll, K.J., Baggetto, L., Veith, G.M., and Meng, Y.S.: Effect of morphology and manganese valence on the voltage fade and capacity retention of Li[Li2/12Ni3/12Mn7/12]O2. ACS Appl. Mater. Interfaces 6, 18868 (2014).CrossRefGoogle ScholarPubMed
George, A.M., Richet, P., and Stebbins, J.F.: Cation dynamics and premelting in lithium metasilicate (Li2SiO3) and sodium metasilicate (Na2SiO3): A high-temperature NMR study. Am. Mineral. 83, 1277 (1998).CrossRefGoogle Scholar
Na, S-H., Kim, H-S., and Moon, S-I.: The effect of Si doping on the electrochemical characteristics of LiNixMnyCo(1−xy)O2. Solid State Ionics 176, 313 (2005).CrossRefGoogle Scholar
Guo, X-J., Li, Y-X., Zheng, M., Zheng, J-M., Li, J., Gonf, Z-L., and Yang, Y.: Structural and electrochemical characterization of xLi[Li1/3Mn2/3]O2·(1 − x)Li[Ni1/3Mn1/3Co1/3]O2 (0 ≤ x ≤ 0.9) as cathode materials for lithium ion batteries. J. Power Sources 184, 414 (2008).CrossRefGoogle Scholar
Santhanam, R., Jones, P., Sumana, A., and Rambabu, B.: Influence of lithium content on high rate cycleability of layered Li1+xNi0.30Co0.30Mn0.40O2 cathodes for high power lithium-ion batteries. J. Power Sources 195, 7391 (2010).CrossRefGoogle Scholar
Huang, Y-J., Gao, D-S., Lei, G-T., Li, Z-H., and Su, G-Y.: Synthesis and characterization of Li(Ni1/3Co1/3Mn1/3)0.96Si0.04O1.96F0.04 as a cathode material for lithium-ion battery. Mater. Chem. Phys. 106, 354 (2007).CrossRefGoogle Scholar
Shaju, K., Subba Rao, G., and Chowdari, B.V.: Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim. Acta 48, 145 (2002).CrossRefGoogle Scholar
Julien, C.M. and Massot, M.: Lattice vibrations of materials for lithium rechargeable batteries III. Lithium manganese oxides. Mater. Sci. Eng., B 100, 69 (2003).CrossRefGoogle Scholar
Martha, S.K., Nanda, J., Veith, G.M., and Dudney, N.J.: Surface studies of high voltage lithium rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J. Power Sources 216, 179 (2012).CrossRefGoogle Scholar
Amalraj, S.F., Talianker, M., Markovsky, B., Sharon, D., Burlaka, L., Shafir, G., Zinigrad, E., Haik, O., Aurbach, D., Lampert, J., Schulz-Dobrick, M., and Garsuch, A.: Study of the lithium-rich integrated compound xLi2MnO3 (1 − x)LiMO2 (x around 0.5; M = Mn, Ni, Co; 2:2:1) and its electrochemical activity as positive electrode in lithium cells. J. Electrochem. Soc. 160, A324 (2013).CrossRefGoogle Scholar
Pham, H.Q., Nam, K-M., Hwang, E-H., Kwon, Y-G., Jung, H.M., and Song, S-W.: Performance enhancement of 4.8 V Li1.2Mn0.525Ni0.175Co0.1O2 battery cathode using fluorinated linear carbonate as a high-voltage additive. J. Electrochem. Soc. 161, A2002 (2014).CrossRefGoogle Scholar
Erickson, E.M., Schipper, F., Penki, T.R., Shin, J-Y., Erk, C., Chesneau, F-F., Markovsky, B., and Aurbach, D.: Review—Recent advances and remaining challenges for lithium ion battery cathodes. J. Electrochem. Soc. 164, A6341 (2017).CrossRefGoogle Scholar
Koga, H., Croguennec, L., Ménétrier, M., Mannessiez, P., Weill, F., and Delmas, C.: Different oxygen redox participation for bulk and surface: A possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2. J. Power Sources 236, 250 (2013).CrossRefGoogle Scholar
Jung, R., Metzger, M., Maglia, F., Stinner, C., and Gasteiger, H.A.: Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. J. Electrochem. Soc. 164, A1361 (2017).CrossRefGoogle Scholar
Gowda, S.R., Dees, D.W., Jansen, A.N., and Gallagher, K.G.: Examining the electrochemical impedance at low states of charge in lithium- and manganese-rich layered transition-metal oxide electrodes. J. Electrochem. Soc. 162, A1374 (2015).CrossRefGoogle Scholar
Mao, W., Ai, G., Dai, Y., Fu, Y., Song, X., Lopez, H., and Battaglia, V.: Nature of the impedance at low states of charge for high-capacity, lithium and manganese-rich cathode materials. J. Electrochem. Soc. 163, A3091 (2016).CrossRefGoogle Scholar
Hoon Kim, J., Jun Lee, S., Moon Lee, J., and Hyung Cho, B.: 7th International Conference on Power Electronics (IEEE, Daegu, South Korea, 2007); pp. 11731178.Google Scholar
James, C., Wu, Y., Sheldon, B.W., and Qi, Y.: The impact of oxygen vacancies on lithium vacancy formation and diffusion in Li2−xMnO3−δ. Solid State Ionics 289, 87 (2016).CrossRefGoogle Scholar
James, C., Wu, Y., Sheldon, B.W., and Qi, Y.: Computational analysis of coupled anisotropic chemical expansion in Li2−xMnO3−δ. MRS Adv. 1, 1037 (2016).CrossRefGoogle Scholar
Das, T., Nicholas, J.D., Sheldon, B.W., and Qi, Y.: Anisotropic chemical strain in cubic ceria due to oxygen-vacancy-induced elastic dipoles. Phys. Chem. Chem. Phys. 20, 15293 (2018).CrossRefGoogle ScholarPubMed