Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T05:31:04.007Z Has data issue: false hasContentIssue false

Simultaneous phase- and morphology-controlled synthesis of MnO2 crystals through controlled release of cuprous ions in hydrothermal condition

Published online by Cambridge University Press:  31 January 2011

Yange Zhang
Affiliation:
Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan 461000, China
Zhi Zheng*
Affiliation:
Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan 461000, China
Ka Wai Wong*
Affiliation:
Institute of Precision Engineering and Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
Fengling Yang
Affiliation:
Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan 461000, China
Zude Zhang
Affiliation:
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
Get access

Abstract

The α-, β-, and δ-MnO2 with various morphologies have been synthesized by a novel redox system of KMnO4 and CuCl with HCl added under a hydrothermal condition. The resultant MnO2 products have been characterized by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Upon control of reaction temperature and duration, it was observed that MnO2 polymorphs of different morphology (e.g., flowery δ-MnO2, β-MnO2 nanowires and octahedrons, α-MnO2 nanowires) can be prepared in an adjustable manner. The phenomenon is mainly attributed to the effect of cuprous ions controllably released from CuCl by the action of HCl at different experimental conditions. The corresponding formation mechanism for the MnO2 crystals will also be proposed and discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lin, R., Liu, W-P., Zhong, Y-J., Luo, M-F.: Catalyst characterization and activity of Ag–Mn complex oxides. Appl. Catal., A 220, 165 2001CrossRefGoogle Scholar
2.Li, Y.D., Li, X.L., Deng, Z.X., Zhou, B.C., Fan, S.S., Wang, J.W., Sun, X.M.: From surfactant-inorganic mesostructures to tungsten nanowires. Angew. Chem., Int. Ed. 41, 333 20023.0.CO;2-5>CrossRefGoogle ScholarPubMed
3.Armstrong, A.R., Bruce, P.G.: Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499 1996CrossRefGoogle Scholar
4.Bach, S., Pereira Ramos, J.P., Baffier, N.: A new MnO2 tunnel related phase as host lattice for Li intercalation. Solid State Ionics 80, 151 1995CrossRefGoogle Scholar
5.Xu, J.J., Yang, J.: Nanostructured amorphous manganese oxide cryogel as a high-rate lithium intercalation host. Electrochem. Commun. 5, 230 2003CrossRefGoogle Scholar
6.Thackeray, M.M.: Manganese oxides for lithium batteries. Prog. Solid State Chem. 25, 1 1997CrossRefGoogle Scholar
7.Wang, X., Li, Y.D.: Selected-control hydrothermal synthesis of alpha- and beta-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124, 2880 2002CrossRefGoogle Scholar
8.Wang, X., Li, Y.D.: Rational synthesis of alpha-MnO2 single-crystal nanorods. Chem. Commun. 7, 764 2002CrossRefGoogle Scholar
9.Gao, Y.Q., Wang, Z.H., Wan, J.X., Zou, G.F., Qian, Y.T.: A facile route to synthesize uniform single-crystalline α-MnO2 nanowires. J. Cryst. Growth 279, 415 2005CrossRefGoogle Scholar
10.Li, Z.Q., Ding, Y., Xiong, Y.J., Yang, Q., Xie, Y.: One-step solution-based catalytic route to fabricate novel α-MnO2 hierarchical structures on a large scale. Chem. Commun. (Camb.) 918 2005CrossRefGoogle ScholarPubMed
11.Wei, M.D., Konishi, Y., Zhou, H.S., Sugihara, H., Arakawa, H.: Synthesis of single-crystal manganese dioxide nanowires by a soft chemical process. Nanotechnology 16, 245 2005CrossRefGoogle ScholarPubMed
12.Zheng, D.S., Yin, Z.L., Zhang, W.M., Tan, X.J., Sun, S.X.: Novel branched γ-MnOOH and β-MnO2 multipod nanostructures. Cryst. Growth Des. 6, 1733 2006CrossRefGoogle Scholar
13.Zhang, Y.G., Liu, Y., Guo, F., Hu, Y.H., Liu, X.Z., Qian, Y.T.: Single-crystal growth of MnOOH and beta-MnO2 microrods at lower temperatures. Solid State Commun. 134, 523 2005CrossRefGoogle Scholar
14.Wang, G.L., Tang, B., Zhuo, L.H., Ge, J.C., Xue, M.: Facile and selected-control synthesis of β-MnO2 nanorods and their magnetic properties. Eur. J. Inorg. Chem. 2313 2006CrossRefGoogle Scholar
15.Xi, G.C., Peng, Y.Y., Zhu, Y.C., Xu, L.Q., Zhang, W.Q., Yu, W.C., Qian, Y.T.: Preparation of β-MnO2 nanorods through a γ-MnOOH precursor route. Mater. Res. Bull. 39, 1641 2004CrossRefGoogle Scholar
16.Sun, X.D., Ma, C.L., Wang, Y.D.: Preparation and characterization of MnOOH and β-MnO2 whiskers. Inorg. Chem. Commun. 5, 747 2002CrossRefGoogle Scholar
17.Yuan, Z.Y., Zhang, Z.L., Du, G.H., Ren, T.Z., Su, B.L.: A simple method to synthesize single-crystalline manganese oxide nanowires. Chem. Phys. Lett. 378, 349 2003CrossRefGoogle Scholar
18.Wu, C.Z., Xie, Y., Wang, D., Yang, J., Li, T.W.: Selected-control hydrothermal synthesis of γ-MnO2 3D nanostructures. J. Phys. Chem. B 107, 13583 2003CrossRefGoogle Scholar
19.Al-Sagheer, F.A., Zaki, M.I.: Surface properties of sol–gel synthesized δ-MnO2 assessed by N2 sorptometry, electron microscopy, and x-ray photoelectron spectroscopy. Colloids Surf., A 173, 193 2000CrossRefGoogle Scholar
20.Song, X.C., Zhao, Y., Zheng, Y.F.: Synthesis of MnO2 nanostructures with sea urchin shapes by a sodium dodecyl sulfate-assisted hydrothermal process. Cryst. Growth Des. 7, 159 2007CrossRefGoogle Scholar
21.Kumar, V.G., Kim, K.B.: Organized and highly dispersed growth of MnO2 nano-rods by sonochemical hydrolysis of Mn(3)acetate. Ultrason. Sonochem. 13, 549 2006CrossRefGoogle Scholar
22.Yang, Z.H., Zhang, Y.C., Zhang, W.X., Wang, X., Qian, Y.T., Wen, X.G., Yang, S.H.: Nanorods of manganese dioxides: Synthesis, characterization and catalytic application. J. Solid State Chem. 179, 679 2006CrossRefGoogle Scholar
23.Lin, H.Y., Sun, Y.P., Weng, B.J., Yang, C.T., Suen, N.T., Liao, K.H., Huang, Y.C., Ho, J.Y., Chong, N.S., Tang, H.Y.: Factors influencing the structure of electrochemically prepared α-MnO2 and γ-MnO2 phases. Electrochim. Acta 52, 6548 2007CrossRefGoogle Scholar
24.Huang, X.K., Lv, D.P., Yue, H.J., Attia, A., Yang, Y.: Controllable synthesis of α- and β- MnO2: Cationic effect on hydrothermal crystallization. Nanotechnology 19, 225606 2008CrossRefGoogle ScholarPubMed
25.Gao, X.P., Bao, J.L., Pan, G.L., Zhu, H.Y., Huang, P.X., Wu, F., Song, D.Y.: Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. J. Phys. Chem. B 108, 5547 2004CrossRefGoogle Scholar
26.Wang, X., Li, Y.D.: Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem. Eur. J. 9, 300 2003CrossRefGoogle ScholarPubMed
27.Chang, Z.R., Liu, Y.Y., Tang, H.W., Li, Y.P.: Studies on the preparation and electrochemical performance for nano-MnO2 with wet chemical method. J. Henan Normal University (Natural Science Edition, in Chinese) 34, 77 2006Google Scholar
28.Feng, Q., Kanoh, H., Ooi, K.: Manganese oxide porous crystals. J. Mater. Chem. 9, 319 1999CrossRefGoogle Scholar
29.Kijima, N., Yasuda, H., Sato, T., Yoshimura, Y.: Preparation and characterization of open tunnel oxide α-MnO2 precipitated by ozone oxidation. J. Solid State Chem. 159, 94 2001CrossRefGoogle Scholar
30.Chabre, Y., Pannetier, J.: Structural and electrochemical properties of the proton/γ-MnO2 system. Prog. Solid State Chem. 23, 1 1995CrossRefGoogle Scholar
31.Lou, X.W., Zeng, H.C.: Complex α-MoO3 nanostructures with external bonding capacity for self-assembly. J. Am. Chem. Soc. 125, 2697 2003CrossRefGoogle Scholar
32.Cölfen, H., Mann, S.: Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed. 42, 2350 2003CrossRefGoogle ScholarPubMed
33.Wang, X., Yu, L.J., Hu, P., Yuan, F.L.: Synthesis of single-crystalline hollow octahedral NiO. Cryst. Growth Des. 7, 2415 2007CrossRefGoogle Scholar