Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T00:41:14.598Z Has data issue: false hasContentIssue false

Single-crystal growth of the Al–Cu–Fe icosahedral quasicrystal from the ternary melt

Published online by Cambridge University Press:  31 January 2011

J. Q. Guo*
Affiliation:
National Institute for Materials Science, and Japan Science and Technology Corporation, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
A. P. Tsai
Affiliation:
National Institute for Materials Science, and Japan Science and Technology Corporation, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
*
a) Address all correspondence to this author. e-mail: Junqing.GUO@nims.go.jp
Get access

Abstract

An Al–Cu–Fe partial phase diagram involving the icosahedral quasicrystal has been constructed along an Al62.5Cu37.5−xFex (x = 2.5 to 25 at.%) isopleth. The icosahedral quasicrystal forms at 850 °C via a peritectic reaction between a liquid and (Al,Cu) 13Fe4 phase and coexists with a liquid phase at temperature below the peritectic reaction. The icosahedral quasicrystal crystallizes as a primary phase in the temperature range of 760 to 850 °C from alloys surrounded by composition points of Al–Cu–Fe: 62.5–33–4.5, 62.5–34.5–3, 57.5–39.5–3 and 57.5–38.0–4.5 at.%. On the basis of the phase diagram, single grains of the Al–Cu–Fe icosahedral quasicrystal with a maximum size of 5 mm were successfully grown from Al–Cu–Fe melts.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yokoyama, Y., Miura, T., Tsai., A.P., Inoue, A., and Masumoto, T., Mater. Trans. JIM 33, 97 (1992).Google Scholar
2.de Boissieu, M., Durand-Charre, M., Bastie, P., Carabelli, A., Boudard, M., Bessiere, M., Lefebvre, S., Janot, C., and Audier, M., Philos. Mag. Lett. 65, 147 (1992).Google Scholar
3.Fisher., I.R., Kramer., M.J., Islam, Z., Ross., A.R., Kracher, A., Wiener, T., Sailer., M.J., Goldman., A.I., and Canfield., P.C., Philos. Mag. B 79, 425 (1999).Google Scholar
4.Yokoyama, Y., Note, R., Kimura, S., Inoue, A., Fukaura, K., and Sunada, H., Mater. Trans. JIM 38, 943 (1997).CrossRefGoogle Scholar
5.Sato., T.J., Hirano, T., and Tsai., A.P., J. Cryst. Growth 191, 545 (1998).CrossRefGoogle Scholar
6.Guo., J.Q., Sato., T.J., Hirano, T., and Tsai., A.P., J. Cryst. Growth 197, 963 (1999).CrossRefGoogle Scholar
7.Yokoyama, Y., Note, R., Yamaguchi, A., Inoue, A., Fukaura, K., and Sunada, H., Mater. Trans. JIM 40, 123 (1999).Google Scholar
8.Guo., J.Q., Abe, E., Sato., T.J., and Tsai., A.P., J. Japan. of Appl. Phys. 38, L1049 (1999).Google Scholar
9.Guo., J.Q., Sato., T.J., Abe, E., Takakura, H., and Tsai., A.P., Philos. Mag. Lett. 80, 495 (2000).Google Scholar
10.Fisher., I.R., Islam, Z., Panchula., A.F., Cheon., K.O., Kramer., M.J., Canfield., P.C., and Goldman., A.I., Philos.Mag. B 77, 1601 (1998).Google Scholar
11.Sato., T.J., Takakura, H., and Tsai., A.P., Japan. J. of Appl. Phys., Part 2 37, L663 (1998).Google Scholar
12.Gayle., F.W., Shapiro., A.J., Biancaniello., F.S., and Boettinger., W.J., Metall. Trans. 23A, 2409 (1992).Google Scholar
13.Gratias, D., Calvayrac, Y., Devaud-Rzepski, J., Faudot, F., Harmelin, M., Quivy, A., and Bancel., P.A., J. Non-Cryst. Solids, 153&154, 482 (1993).CrossRefGoogle Scholar
14.Bancel., P.A., Phys. Rev. Lett. 63, 2741 (1989).Google Scholar
15.Calvayrac, Y., Quivy, A., Bessiere, M., Lefebvre, S., Cornier-Quiquandon, M., and Gratias, D., J. Phys., Paris 51, 417 (1990).Google Scholar
16.Ishimasa, T. and Mori, M., Philos. Mag. Lett. 62, 357 (1990).CrossRefGoogle Scholar
17.Lograsso., T.A. and Delaney., D.W., J. Mater. Res. 11, 2125 (1996).CrossRefGoogle Scholar
18.Yokoyama, Y., Fukaura, K., and Sunada, H., Mater. Trans. JIM 41, 668 (2000).CrossRefGoogle Scholar