Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T01:00:00.008Z Has data issue: false hasContentIssue false

Single-layer & double-layer microwave absorbers based on Co–Ti substituted barium hexaferrites for application in X and Ku-band

Published online by Cambridge University Press:  21 November 2016

Sukhleen Bindra Narang*
Affiliation:
Department of Electronics Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
Kunal Pubby
Affiliation:
Department of Electronics Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
*
a)Address all correspondence to this author. e-mail: sukhleen2@yahoo.com
Get access

Abstract

To develop microwave absorbing materials over X and Ku-band, M-type hexaferrites: BaCoxTixFe(12−2x)O19, with x varying from 0.0 to 1.0 in step size of 0.2, were prepared by solid state reaction route. Characterization techniques like x-ray diffraction, scanning electron micrograph and vibration sample magnetometer were used to analyze the crystalline phases, morphologies, and magnetic properties of the samples. Vector network analyzer was utilized to scrutinize the electromagnetic properties like complex permittivity, complex permeability, and microwave absorption. Results indicate the enhancement of imaginary permittivity and permeability with substitution. Absorption analysis concludes that the composition with x = 0.8 is the best single-layer microwave absorber out of all the prepared compositions with minimum reflection loss −33 dB at thickness of 3.1 mm. At the same time, the compositions x = 0.2, 0.4, 0.6, and 1.0 are combined to form double-layer absorber with absorption more than 99% in X and Ku-band.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Narang, S.B. and Hudiara, I.S.: Microwave dielectric properties of M-type barium, calcium and strontium hexaferrite substituted with Co and Ti. J. Ceram. Process. Res. 7(2), 113 (2006).Google Scholar
Meena, R.S., Bhattachrya, S., and Chatterjee, R.: Complex permittivity, permeability and wide band microwave absorbing property of La3+ substituted U-type hexaferrite. J. Magn. Magn. Mater. 322(14), 1923 (2010).Google Scholar
Harris, V.G., Geiler, A., Chen, Y., Yoon, S.D., Wu, M., Yang, A., Chen, Z., He, P., Parimi, P.V., Zuo, X., Patton, C.E., Abe, M., Acher, O., and Vittoria, C.: Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321(14), 2035 (2009).CrossRefGoogle Scholar
Ahmed, M., Grössinger, R., Kriegisch, M., Kubel, F., and Rana, M.U.: Magnetic and microwave attenuation behaviour of Al-substituted Co2W hexaferrites synthesized by sol–gel. Curr. Appl. Phys. 12(6), 1413 (2012).Google Scholar
Pullar, R.C.: Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57(7), 1191 (2012).Google Scholar
Alam, R.S., Moradi, M., Rostami, M., Nikmanesh, H., Moayedi, R., and Bai, Y.: Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 381, 1 (2015).Google Scholar
Narang, S.B., Kaur, P., Bahel, S., and Singh, C.: Microwave characterization of Co–Ti substituted barium hexagonal ferrites in X-band. J. Magn. Magn. Mater. 405, 17 (2016).Google Scholar
Narang, S.B., Singh, A., and Singh, K.: High frequency dielectric behaviour of rare-earth substituted Sr–M hexaferrite. J. Ceram. Process. Res. 8(5), 347 (2007).Google Scholar
Singh, C., Narang, S.B., Hudiara, I.S., Sudheendran, K., and James Raju, K.C.: Complex permittivity and complex permeability of Sr ions substituted Ba ferrite at X-band. J. Magn. Magn. Mater. 320(10), 1657 (2008).CrossRefGoogle Scholar
Ghasemi, A., Liu, X., and Morisako, A.: Magnetic and microwave absorption of BaFe(12−x)(Mn0.5Cu0.5Zr) x/2O19 synthesized using sol–gel processing. J. Magn. Magn. Mater. 316, e105 (2007).Google Scholar
Srivastava, R. and Yadav, B.C.: Ferrite materials: Introduction, synthesis techniques, and applications as sensors. Int. J. Green Nanotechnol. 4(2), 141 (2012).CrossRefGoogle Scholar
Von Hippel, A.R.: Dielectric Materials and Applications (Artech House, Norwood, 1995).Google Scholar
Nicolson, A.M. and Ross, G.F.: Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 19, 377 (1970).Google Scholar
Weir, W.B.: Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE, 62, 33 (1974).Google Scholar
Ahmed, M., Grössinger, R., Kriegisch, M., Kubel, F., and Rana, M.U.: Characterization of Sr-substituted W-type hexagonal ferrites synthesized by sol–gel auto-combustion method. J. Magn. Magn. Mater. 332, 137 (2013).CrossRefGoogle Scholar
Wagner, T.R.: Preparation and crystal structure analysis of magnetoplumbite-type BaGa12O19 . J. Solid State Chem. 136, 120 (1998).CrossRefGoogle Scholar
Cullity, B.D. and Graham, C.D.: Introduction to Magnetic Materials, 2nd ed. (Wiley-IEEE Press, Hoboken, New Jersey, 2008). doi: 10.1002/9780470386323.Google Scholar
Abbas, W., Ahmad, I., Kanwal, M., Murtaza, G., Ali, I., Khan, M.A., Akhtar, M.N., and Ahmad, M.: Structural and magnetic behaviour of Pr-substituted M-type hexagonal ferrites synthesized by sol–gel autocombustion for a variety of applications. J. Magn. Magn. Mater. 374, 187 (2015).Google Scholar
Ashiq, M.N., Shakoor, S., Najam-Ul-Haq, M., Warsi, M.F., Ali, I., and Shakir, I.: Structural, electrical, dielectric and magnetic properties of Gd–Sn substituted Sr-hexaferrite synthesized by sol–gel combustion method. J. Magn. Magn. Mater. 374, 173 (2015).CrossRefGoogle Scholar
Xu, J.J., Yang, C.M., Zou, H.F., Song, Y.H., Gao, G.M., An, B.C., and Gan, S.C.: Electromagnetic and microwave absorbing properties of Co2Z-type hexaferrites doped with La3+ . J. Magn. Magn. Mater. 321(19), 3231 (2009).Google Scholar
Xu, J., Zou, H., Li, H., Li, G., Gan, S., and Hong, G.: Influence of Nd3+ substitution on the microstructure and electromagnetic properties of barium W-type hexaferrite. J. Alloys Compd. 490(1–2), 552 (2010).Google Scholar
Ahmad, I., Ahmad, M., Ali, I., Kanwal, M., Awan, M.S., Mustafa, G., and Ahmad, M.: Effect of Gd-substitution on the microstructure, electrical and electromagnetic behaviour of M-type hexagonal ferrites. J. Electron. Mater. 44(7), 2221 (2015).CrossRefGoogle Scholar
Goldman, A.: Modern Ferrite Technology, 2nd ed. (Springer, New York, 2006); pp. 78135. doi: 10.1007/978-0-387-29413-1.Google Scholar
Gordani, G.R., Ghasemi, A., and Saidi, A.: Enhanced magnetic properties of substituted Sr-hexaferrite nanoparticles synthesized by co-precipitation method. Ceram. Int. 40(3), 4945 (2014).Google Scholar
Ahmad, M., Aen, F., Islam, M.U., Niazi, S.B., and Rana, M.U.: Structural, physical, magnetic and electrical properties of La-substituted W-type hexagonal ferrites. Ceram. Int. 37(8), 3691 (2011).Google Scholar
Aen, F., Ahmad, M., and Rana, M.U.: The role of Ga substitution on magnetic and electromagnetic properties of nano-sized W-type hexagonal ferrites. Curr. Appl. Phys. 13(1), 41 (2013).CrossRefGoogle Scholar
Bsoul, I. and Mahmood, S.H.: Magnetic and structural properties of BaFe12−x Ga x O19 nanoparticles. J. Alloys Compd. 489(1), 110 (2010).Google Scholar
Sharbati, A., Amiri, G.R., and Mousarezaei, R.: Structural, magnetic, and microwave absorption properties of nanocrystalline Ca(MnSn) x Fe12−2x O19 ferrites. J. Electron. Mater. 44(2), 715 (2015).Google Scholar
Smit, J. and Wijn, H.P.J.: Ferrites (John Wiley and Sons, Inc, New York, 1959).Google Scholar
Hu, B., Chen, Y., Su, Z., Bennett, S., Burns, L., Uddin, G., Ziemer, K., and Harris, V.G.: Magnetocrystalline anisotropy and FMR linewidth of Zr and Zn-doped Ba-hexaferrite films grown on MgO (111). IEEE Trans. Magn. 49(7), 4234 (2015).Google Scholar
Singh, C., Narang, S.B., Hudiara, I.S., Sudheendran, K., and James Raju, K.C.: Microwave and electrical behaviour of Co2+ and Ru4+ ions substituted Ba–Sr sintered ferrite. J. Electroceram. 27(3–4), 120 (2011).CrossRefGoogle Scholar
Singh, A., Narang, S.B., Singh, K., Sharma, P., and Pandey, O.P.: Structural, AC Conductivity and dielectric properties of Sr–La hexaferrite. Euro. Phy. J. Appl. Phys. 33(3), 189 (2006).Google Scholar
Koops, C.G.: On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121 (1951).Google Scholar
Wagner, K.W.: Zur theorie der unvollkommenen dielectrika. Ann. Phys. 40(5), 817 (1973). doi: 10.1002/andp.19133450502.Google Scholar
Mosleh, Z., Kameli, P., Poorbaferani, A., Ranjbar, M., and Salamati, H.: Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite. J. Magn. Magn. Mater. 397, 101 (2016).CrossRefGoogle Scholar
Chand, J. and Singh, M.: Electric and dielectric properties of MgGd0.1Fe1.9O4 ferrite. J. Alloys Compd. 486(1–2), 376 (2009).CrossRefGoogle Scholar
Haijun, Z., Zhichao, L., Chenliang, M., Xi, Y., Liangying, Z., and Mingzhong, W.: Preparation and microwave properties of Co- and Ti-doped barium ferrite by citrate sol–gel process. Mater. Chem. Phys. 80, 129 (2003).Google Scholar
Narang, S.B., Chawla, S.K., Mudsainiyan, R.K., and Pubby, K.: Comparative dielectric analysis of Co–Zr doped M-type barium hexaferrites BaCo x Zr x Fe(12−2x)O19 prepared by different wet chemical routes. Integr. Ferroelectr. 167(1), 98 (2015).Google Scholar
Singh, P., Babbar, V.K., Razdan, A., Srivastava, S.L., and Puri, R.K.: Complex permeability and permittivity, and microwave absorption studies of Ca(CoTi) x Fe12−2x O19 hexaferrite composites in X-band microwave frequencies. Mater. Sci. Eng., B 67(3), 132 (1999).CrossRefGoogle Scholar
Guo, F., Ji, G., Xu, J., Zou, H., Gan, S., and Xu, X.: Effect of different rare-earth elements substitution on microstructure and microwave absorbing properties of Ba0.9RE0.1Co2Fe16O27 (RE = La, Nd, Sm) particles. J. Magn. Magn. Mater. 324(6), 1209 (2012).Google Scholar
Folgueras, L.C., Alves, M.A., and Rezende, M.C.: Dielectric properties of microwave absorbing sheets produced with silicone and polyaniline. Mater. Res. 13(2), 197 (2010).Google Scholar
Kaur, P., Chawla, S.K., Narang, S.B., and Pubby, K.: Structural, magnetic and microwave absorption behaviour of Co–Zr substituted strontium hexaferrites prepared using tartaric acid fuel for electromagnetic interference suppression. J. Magn. Magn. Mater. 422, 304 (2010).Google Scholar
Ozah, S. and Bhattacharya, N.S.: Nanosized barium hexaferrite in novolac phenolic resin as microwave absorber for X-band application. J. Magn. Magn. Mater. 342, 92 (2013).Google Scholar
Ounnunkad, S.: Improving magnetic properties of barium hexaferrites by La or Pr substitution. Solid State Commun. 138, 472 (2006).Google Scholar
Choopani, S., Keyhan, N., Ghasemi, A., Sharbati, A., and Alam, R.S.: Structural, magnetic and microwave absorption characteristics of BaCo x Mn x T2x Fe12−4x O19 . Mater. Chem. Phys. 113(2), 717 (2009).Google Scholar
Tang, X., Yang, Y., and Hu, K.: Structure and Electromagnetic behaviour of BaFe12−2x (Ni0.8Ti0.7) x O19−0.8x in the 2–12 GHz frequency range. J. Alloys. Compd. 477(1–2), 488 (2009).Google Scholar
Ghasemi, A., Liu, X., and Morisako, A.: Effect of additional elements on the structural properties, magnetic characteristics and natural resonance frequency of strontium ferrite nanoparticles/polymer composites. IEEE Trans. Magn. 45(10), 4420 (2009).CrossRefGoogle Scholar
Folgueras, L.C., Alves, M.A., and Rezende, M.C.: Microwave absorbing paints and sheets based on carbonyl iron and polyaniline: Measurement and simulation of their properties. J. Aerosp. Technol. Manage. 2(1), 63 (2010). doi: 10.5028/jatm.2010.02016370.CrossRefGoogle Scholar
Balanis, C.A.: Advanced Engineering Electromagnetics (John Wiley and Sons, New York, 1989).Google Scholar