Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-02T22:13:41.387Z Has data issue: false hasContentIssue false

Single-phase aluminum nitride films by dc-magnetron sputtering

Published online by Cambridge University Press:  31 January 2011

J. S. Morgan
Affiliation:
Milton S. Eisenhower Research Center, The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723
W. A. Bryden
Affiliation:
Milton S. Eisenhower Research Center, The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723
T. J. Kistenmacher
Affiliation:
Milton S. Eisenhower Research Center, The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723
S. A. Ecelberger
Affiliation:
Milton S. Eisenhower Research Center, The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723
T. O. Poehler
Affiliation:
Milton S. Eisenhower Research Center, The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723
Get access

Abstract

Single-phase aluminum nitride films were deposited onto fused quartz and single-crystal sapphire by current-controlled, reactive, de magnetron sputtering from an aluminum metal target. Optical and structural properties were observed to correlate systematically with the composition of the sputter gas over a wide range of nitrogen partial pressures. A transition in the electrical conductivity of the deposited films occurred as a function of N2 partial pressure. This transition is driven by the condition of the target surface. When the N2 partial pressure was high and the target surface was substantially covered with AlNx, the deposited film was insulating, stoichiometric AlN. When the N2 partial pressure was low and the target surface was substantially Al°, the deposited film was conducting, substoichiometric AlNx.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cox, G.A., Cummins, D.O., Kawabe, K., and Tregold, R.H., J. Phys. Chem. Solids 28, 543 (1967).Google Scholar
2Wriedt, H. A., Bull. Alloy Phase Diagrams 7, 329 (1986), and references therein.Google Scholar
3Duchéne, J., Thin Solid Films 8, 69 (1971).CrossRefGoogle Scholar
4McMahon, R., Affinito, J., and Parsons, R. R., J. Vac. Sci. Technol. 20, 376 (1982).CrossRefGoogle Scholar
5Affinito, J., Fortier, N., and Parsons, R.R., J. Vac. Sci. Technol. A 2, 316 (1984).CrossRefGoogle Scholar
6Aita, C.R., J. Appl. Phys. 53, 1807 (1982);CrossRefGoogle Scholar
Aita, C.R. and Gawlak, C.J., J. Vac. Sci. Technol. A 1, 403 (1983).CrossRefGoogle Scholar
7Kubiak, C. J. G., Aita, C. R., Hickernell, F. S., and Joseph, S. J., in Thin Films: The Relationships of Structure to Properties, edited by Aita, C.R. and SreeHarsha, K.S. (Mater. Res. Soc. Symp. Proc. 47, Pittsburgh, PA, 1985), p. 75.Google Scholar
8Xinjiao, L., Zechuan, X., Ziyou, H., Huazhe, C., Wuda, S., Zhongcai, C., Feng, Z., and Enguang, W., Thin Solid Films 139, 261 (1986).CrossRefGoogle Scholar
9Harper, J. M. E., Cuomo, J. J., and Hentzell, H.T. G., J. Appl. Phys. 58, 550(1985).Google Scholar
10Hentzell, H.T. G., Harper, J. M. E., and Cuomo, J. J., J. Appl. Phys. 58, 556 (1985).CrossRefGoogle Scholar
11Rutz, R., Harris, E. P., and Cuomo, J. J., IBMJ. Res. Dev. 17, 61 (1973).Google Scholar
12Harris, E. P., Appl. Phys. Lett. 24, 514 (1974).CrossRefGoogle Scholar
13Maniv, S. and Westwood, W. D., Surf. Sci. 100, 108 (1980).CrossRefGoogle Scholar
14Maniv, S. and Westwood, W. D., J. Vac. Sci. Technol. 17, 743 (1980).Google Scholar
15Berg, S., Blom, H-O., Larsson, T., and Nender, C., J. Vac. Sci. Technol. A 5, 202 (1987).Google Scholar
16Hohnke, D. K., Schmatz, D. J., and Hurley, M. D., Thin Solid Films 118, 301 (1984).Google Scholar
17Carlone, C., Lakin, K. M., and Shanks, H. R., J. Appl. Phys. 55, 4010 (1984).CrossRefGoogle Scholar
18van der Pauw, L. J., Philips Tech. Rev. 20, 220 (1958/1959).Google Scholar
19Seitman, J.R. and Aita, C.R., J. Vac. Sci. Technol. A 6, 1712 (1988).CrossRefGoogle Scholar