Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T03:39:10.828Z Has data issue: false hasContentIssue false

Sol-gel synthesis of Ln2(Ln = La, Nd)Ti2O7

Published online by Cambridge University Press:  31 January 2011

A.V. Prasadarao
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Ulagaraj Selvaraj
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Sridhar Komarneni
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Amar S. Bhalla
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Lanthanum and neodymium titanates were prepared by a sol-gel route. Synthesis of La2Ti2O7 from pure alkoxide precursors yielded an intermediate perovskite type phase, La(1–x)TiO3, which partially transformed to La2Ti2O7 on heating to 1500 °C. Substitution of the lanthanum acetylacetonate for alkoxide precursor yielded La2Ti2O7 without any intermediate phase at a very low temperature of 700 °C. Sintering of the La2Ti2O7 gel powder yielded a highly dense ceramic with ∼97% theoretical density. Similar sintering treatment resulted in ∼92% theoretical density for Nd2Ti2O7.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cook, W.R. Jr., and Jaffe, H., Phys. Rev. 88, 1426 (1952).CrossRefGoogle Scholar
2Roth, R. S., J. Res. Natl. Bur. Stand. 56, 17 (1956).CrossRefGoogle Scholar
3Knopp, O., Brisse, F., and Castelliz, L., Can. J. Chem. 47, 971 (1969).Google Scholar
4Gasperin, P. M., Acta Crystallogr. B 31, 2129 (1975).CrossRefGoogle Scholar
5Nanamatsu, S., Kimura, M., Doi, K., Matsushita, S., and Yamada, N., Ferroelectrics 8, 511 (1974).CrossRefGoogle Scholar
6Kimura, M., Nanamatsu, S., Kawamura, T., and Matsushita, S., Jpn. J. Appl. Phys. 13, 147 (1974).Google Scholar
7Kagayama, K. and Mitsuhiro, T., Jpn. J. Appl. Phys. 24, 1045 (1985).Google Scholar
8Wakino, K., Minai, K., and Tamura, H., J. Am. Ceram. Soc. 67, 278 (1984).CrossRefGoogle Scholar
9Kimura, M., Nanamatsu, S., Doi, K., Matsushita, S., and Takahashi, M., Jpn. J. Appl. Phys. 11, 904 (1972).CrossRefGoogle Scholar
10Yamamato, J. K. and Bhalla, A. S., Appl. Phys. Lett, (submitted).Google Scholar
11Yamamato, J.K. and Bhalla, A.S., Mater. Lett. 10, 497 (1991). 12.Google Scholar
12Shcherbakova, L. G., Mamsurova, L. G., and Sukhanova, G. E., Russ. Chem. Rev. 48, 228 (1979).CrossRefGoogle Scholar
13Takahashi, J. and Ohtsuka, T., J. Am. Ceram. Soc. 72, 426 (1989).Google Scholar
14Balachandran, U. and Eror, N.G., J. Mater. Res. 4, 1525 (1989).CrossRefGoogle Scholar
15Panasenko, E. B. and Begunova, R. G., Russ. J. Inorg. Chem. 29, 1430 (1984).Google Scholar
16Brinker, C.J. and Scherrer, G. H., The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990).Google Scholar
17Prasadarao, A.V., Selvaraj, U., Komarneni, S., and Bhalla, A.S., Ferroelectrics Lett. (1992).Google Scholar
18Kestigan, M. and Ward, R., J. Am. Chem. Soc. 77, 6199 (1955).Google Scholar
19Abe, M. and Uchino, K., Mater. Res. Bull. IX, 147 (1974).Google Scholar
20Sanchez, C., Babonneau, F., Doeuff, S., and Leanstic, A., in Ultra-structure Processing of Advanced Ceramics, edited by Mackenzie, J. D. and Ulrich, D. R. (John Wiley, New York, 1988), p. 77.Google Scholar
21Takahashi, Y. and Matsuoka, Y., J. Mater. Sci. 23, 2259 (1988).Google Scholar
22Ishizawa, N., Marumo, F., Iwai, S., Kimura, M., and Kawamura, T., Acta Crystallogr. B 38, 368 (1982).CrossRefGoogle Scholar
23Prasadarao, A.V., Selvaraj, U., Komarneni, S., and Bhalla, A.S., Mater. Lett. 12, 306 (1991).CrossRefGoogle Scholar