Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-02T18:28:28.732Z Has data issue: false hasContentIssue false

Solid-state mechanical alloying of plastic crystals

Published online by Cambridge University Press:  31 January 2011

J. Font
Affiliation:
Departament de Física i Eng. Nuclear, Univ. Politècnica de Catalunya, Avda. Diagonal 647, E-08028 Barcelona, Spain
J. Muntasell
Affiliation:
Departament de Física i Eng. Nuclear, Univ. Politècnica de Catalunya, Avda. Diagonal 647, E-08028 Barcelona, Spain
E. Cesari
Affiliation:
Departament de Física, Univ. Illes Balears, Crtra. de Valldemossa km 7.5, E-07071 Palma de Mallorca, Spain
J. Pons
Affiliation:
Departament de Física, Univ. Illes Balears, Crtra. de Valldemossa km 7.5, E-07071 Palma de Mallorca, Spain
Get access

Abstract

Ball milling has been used as a solid-state mechanical alloying technique in two binary systems of plastic crystals: neopentylglycol/pentaglycerin (NPG/PG), showing a partial solubility in the ordered phase, and 2-amino-2-methyl-1,3-propanediol/tris(hydroxymethyl) (AMP/TRIS) whose immiscibility in this ordered solid phase is almost total. For the AMP/TRIS system the stable state at room temperature was reached by milling. Contrarily, for NPG/PG, DSC measurements reveal that an annealing period is required after milling. These results have been compared with those of the pentaglycerin/pentaerythritol (PG/PE) binary system, previously studied, whose miscibility is total at room temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Font, J. and Muntasell, J., Mater. Res. Bull. XXIX, 1091 (1994).Google Scholar
2.Barrio, M., Font, J., López, D. O., Muntasell, J., Tamarit, J. Ll., and Haget, Y., J. Chim. Phys. 91, 189 (1994).CrossRefGoogle Scholar
3.Barrio, M., Font, J., López, D. O., Muntasell, J., Tamarit, J. Ll., Chanh, N. B., and Haget, Y., J. Chim. Phys. 87, 1835 (1990).CrossRefGoogle Scholar
4.Barrio, M., Font, J., Muntasell, J., Tamarit, J. Ll., Chanh, N. B., and Haget, Y., J. Chim. Phys. 87, 255 (1990).CrossRefGoogle Scholar
5.Font, J. and Muntasell, J., Mater. Res. Bull. XXX, 479 (1995).CrossRefGoogle Scholar
6.Pochet, P., Tominez, E., Chaffron, L., and Martin, G., Phys. Rev. B 52, 4006 (1995).CrossRefGoogle Scholar
7.Schwarz, R. B. and Rubin, J. B., J. Alloys Compounds 194, 189 (1993).CrossRefGoogle Scholar
8.Zielinski, P. A., Schulz, R., Kaliaguine, S., and Van Neste, A., J. Mater. Res. 8, 2985 (1993).Google Scholar
9.Zaluski, L., Tessier, P., Ryan, D. H., Doner, C. B., Zaluska, A., Ström-Olsen, J. O., Trudeau, M. L., and Schulz, R., J. Mater. Res. 8, 3059 (1993).CrossRefGoogle Scholar
10.Font, J., Muntasell, J., Cesari, E., and Pons, J., J. Mater. Res. 11, 1069 (1996).CrossRefGoogle Scholar
11.Barrio, M., Font, J., López, D. O., Muntasell, J., Tamarit, J. Ll., Negrier, P., and Haget, Y.. J. Phys. Chem. Solids 55, 1295 (1994).CrossRefGoogle Scholar
12.Font, J. and Muntasell, J., J. Mater Chem. 5, 1137 (1995).CrossRefGoogle Scholar