Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T00:07:18.706Z Has data issue: false hasContentIssue false

Some titanium germanium and silicon compounds: Reaction and properties

Published online by Cambridge University Press:  31 January 2011

O. Thomas
Affiliation:
IBM T.J. Watson Research Center, P. O. 218, Yorktown Heights, New York 10598
F. M. d'Heurle
Affiliation:
IBM T.J. Watson Research Center, P. O. 218, Yorktown Heights, New York 10598
S. Delage
Affiliation:
IBM T.J. Watson Research Center, P. O. 218, Yorktown Heights, New York 10598
Get access

Abstract

Titanium reacts with pure Ge in two different ways: At low temperatures one observes the formation of Ti6Ge5 with some characteristics typical of diffusion-controlled reaction. Upon completion of this first stage Ti6Ge5 reacts with remaining Ge to form TiGe2, isomorphous with C54 TiSi2, in a process which is clearly controlled by nucleation. The same observations apply to reactions with a Ge alloy containing 25 at.% Si. With an alloy containing 50 at.% Si the two stages become merged, so that while remaining identifiable, they are much less distinct than with the previous conditions. The reaction behavior observed with a Ge alloy containing 80 at.% Si resembles that generally obtained with pure Si: there are no easily identifiable steps between the initial Si–Ti sample and the final one, Si–TiSi2. With both the 50-50 and 80-20 Si–Ge alloys the formation of the C54 structure is preceded by that of the C49 structure (ZrSi2 type), as with pure Si. The gradual merging of the diffusion-controlled reaction and that controlled by nucleation as the concentration of Si in the substrate increases implies that nucleation plays a significant role in the formation of TiSi2, even if that role cannot be easily isolated. Effects due to gas impurities on the path of the metal-substrate reaction have been analyzed. The resistivities of several pure and alloyed phases have been measured. Alloy scattering in the system TiSi2–TiGe2 is briefly discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Thomas, O., Delage, S., d'Heurle, F. M., and Scilla, G., Appl. Phys. Lett. 54, 228 (1989).CrossRefGoogle Scholar
2Thomas, O., Delage, S., d'Heurle, F. M., and Scilla, G., Appl. Surf. Sci. (1989).Google Scholar
3Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallo-graphic Data for Intermetalllc Phases (American Society for Metals, Metals Park, OH, 1986), pp. 2435, 3194.Google Scholar
4Darken, L. S. and Gurry, R. W., Physical Chemistry of Metals (McGraw-Hill, New York, 1953), p. 79.Google Scholar
5Binary Alloy Phase Diagrams, edited by Massalski, T., Bennett, L. H., and Baker, H. (American Society for Metals, Metals Park, OH, 1986), Vol. 1, p. 1252.Google Scholar
6Nicolet, M-A. and Lau, S. S., in VLSI Science and Technology: Mi-crostructure Science, edited by Einspruch, N. G. and Larrabee, G. B. (Academic Press, New York, 1983), p. 453.Google Scholar
7 Standard Powder Diffraction Pattern no. 21–357 (1971).Google Scholar
8d'Heurle, F. M., J. Mater. Res. 3 (1), 167 (1988).CrossRefGoogle Scholar
9Pico, C. A. and Lagally, M., J. Appl. Phys. 64, 4957 (1988).CrossRefGoogle Scholar
10Baglin, J. E., Dempsey, J., Hammer, W., d'Heurle, F. M., Petersson, C. S., and Serrano, C., J. Electron. Mater. 8, 641 (1979).CrossRefGoogle Scholar
11Torres, J., Pelissier, A., Perio, A., Oberlin, J. C., and Bomchil, G., Le Vide-Les Couches Minces 42–236, 91 (1987).Google Scholar
12Appelbaum, A., Eizenberg, M., and Brener, R., Vacuum 33, 227 (1983).CrossRefGoogle Scholar
13Gas, P., Tardy, J., and d'Heurle, F. M., J. Appl. Phys. 60, 2211 (1987).Google Scholar
14Gas, P., Tardy, J., LeGoues, F. K., and d'Heurle, F. M., J. Appl. Phys. 61, 2203 (1987).CrossRefGoogle Scholar
15Angilello, J., Baglin, J. E., d'Heurle, F. M., Petersson, C. S., and Sigmüller, A., in Thin Film Interfaces and Interactions, edited by Baglin, J. E. and Poate, J. (The Electrochemical Society, Pennington, NJ, 1980), p. 213.Google Scholar
16d'Heurle, F. M., Gas, P., Engström, I., Nygren, S., Östling, M., and Petersson, C. S., IBM Research Report RC 1151, Yorktown Heights, NY, 1985.Google Scholar
17Beyers, R. and Sinclair, R., J. Appl. Phys. 57, 5240 (1985).CrossRefGoogle Scholar
18Raaijmakers, I. J. M., Reader, A. H., and Houtum, H. J. W. Van, J. Appl. Phys. 57, 5240 (1985).Google Scholar
19Jia, C. L., Jiang, J., and Zong, X. F., Philos. Mag. A59, 999 (1989).CrossRefGoogle Scholar
20 Standard Diffraction Powder Pattern no. 5–0582.Google Scholar
21 Standard Diffraction Powder Pattern no. 23–964 (1973).Google Scholar
22Zheng, L. R., Hung, L. S., Feng, S. Q., Revesz, P., Mayer, J. W., and Miles, G., Appl. Phys. Lett. 48, 767 (1986).CrossRefGoogle Scholar
23Brat, T., Osburn, C., Finstad, T., Liu, J., and Ellington, B., J. Electrochem. Soc. 133, 1451 (1986).CrossRefGoogle Scholar
24Nordheim, L.; Ann. Phys. 9, 607 (1931).CrossRefGoogle Scholar
25Linde, J. O., Ann. Phys. 15, 219 (1932).CrossRefGoogle Scholar
26Blatt, F. J., Phys. Rev. 108, 285 (1957).CrossRefGoogle Scholar
27Binary Alloy Phase Diagrams, edited by Massalski, T., Bennett, L. H., and Baker, H. (American Society for Metals, Metals Park, OH, 1986).Google Scholar
28Gas, P., Scilla, G., Michel, A., LeGoues, F. K., Thomas, O., and d'Heurle, F. M., J. Appl. Phys. 63, 5335 (1988).CrossRefGoogle Scholar
29d'Heurle, F.M. and Petersson, C. S., Thin Solid Films 128, 283 (1985).CrossRefGoogle Scholar
30Holloway, K. and Sinclair, R., J. Appl. Phys. 61, 1359 (1987).CrossRefGoogle Scholar
31Holloway, K. and Sinclair, R., J. Less-Common Met. 140, 139 (1988).CrossRefGoogle Scholar
32Tu, K. N., Smith, D. A., and Weiss, B. Z., Phys. Rev. B 36, 8948 (1987).CrossRefGoogle Scholar
33Smith, D. A., Tu, K. N., and Weiss, B. Z., Ultramicroscopy 23, 405 (1987).CrossRefGoogle Scholar
34Weiss, B. Z., Tu, K. N., and Smith, D. A., Acta Metall. 34, 1491 (1986).CrossRefGoogle Scholar
35d'Heurle, F. M., IBM Research Report No. RC 10422, Yorktown Heights, NY 10598, 1983.Google Scholar
36J, I.. Raaijmakers, M. M., Fundamental Aspects of Reactions in Tita-nium-Silicon Thin Films For Integrated Circuits, Ph.D. Thesis, Technical University of Eindhoven, Eindhoven, The Netherlands, 1988.Google Scholar
37Berti, M., Drigo, A. V., Cohen, C., Siejka, J., Bentini, G. G., Nipoti, R., and Guerri, S., J. Appl. Phys. 55, 3558 (1984).CrossRefGoogle Scholar
38d'Heurle, F. M. and Gangulee, A., in The Nature and Behavior of Grain Boundaries, edited by Hu, H. (Plenum Press, New York, 1972), p. 339.CrossRefGoogle Scholar
39LeGoues, F. K., Wittmer, M., Kwok, T., Huang, H-C., and Ho, P. S., Electrochem, J.. Soc. 134, 944 (1987).Google Scholar
40Borisov, V. T., Golikov, V. M., and Scherbedinsky, G. V., Fiz. Met. Metalloved 17, 881 (1964).Google Scholar
41Rosso, T., Aucouturier, M., and Lacombe, P., Scripta Metall. 2, 393 (1968).CrossRefGoogle Scholar
42Gas, P., Poize, S., and Bernardini, J., Acta Metall. 34, 395 (1986).CrossRefGoogle Scholar
43Gas, P., Poize, S., Bernardini, J., and Cabané, J., Acta Metall. 37, 17 (1989).CrossRefGoogle Scholar
44Kattelus, H. and Nicolet, M-A., in Diffusion Phenomena in Thin Films and Microelectronic Materials, edited by Gupta, D. and Ho, P. S. (Noyes Publications, Park Ridge, NJ, 1988), p. 432.Google Scholar
45Thomas, O., Charai, A., d'Heurle, F.M., Finstad, T. G., and Joshi, R. V., Thin Solid Films 171, 343 (1989).CrossRefGoogle Scholar
46Harper, J. M. E., Hörnstrom, S. E., Thomas, O., and Krusin-Elbaum, L., J. Vac. Sci. Technol. A7, 875 (1989).CrossRefGoogle Scholar
47Chu, W. K., Kräuttle, H., Mayer, J. W., Müller, H., and Tu, K. N., Appl. Phys. Lett. 25, 454 (1974).CrossRefGoogle Scholar
48Botha, A. P. and Pretorius, R. (Proc. Mater. Res. Soc. Symp.) (Ma-terials Research Society, Pittsburgh, PA, 1982), Vol. 10, p. 129.Google Scholar
49Cahoon, E. C., Comrie, C. M., and Pretorius, R. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1984), Vol. 25, p. 57.Google Scholar
50d'Heurle, F. M., LeGoues, F. K., Joshi, R., and Suni, I., Appl. Phys. Lett. 48, 332 (1986).CrossRefGoogle Scholar
51d'Heurle, F. M., Tersoff, J., Finstad, T. J., and Cros, A., Appl. Phys. Lett. 59, 177 (1986).Google Scholar
52White, A. (private communication, 1988).Google Scholar