Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T23:55:23.140Z Has data issue: false hasContentIssue false

Stabilizing the Tb-based 214 cuprate by partial Pd substitution

Published online by Cambridge University Press:  15 May 2018

Yuzki M. Oey*
Affiliation:
Department of Chemistry, Princeton University, Princeton, New Jersey 08540, USA
James Eujin Park
Affiliation:
Department of Chemistry, Princeton University, Princeton, New Jersey 08540, USA
Jing Tao
Affiliation:
Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, New York 11973, USA
Elizabeth M. Carnicom
Affiliation:
Department of Chemistry, Princeton University, Princeton, New Jersey 08540, USA
Tai Kong
Affiliation:
Department of Chemistry, Princeton University, Princeton, New Jersey 08540, USA
Marisa B. Sanders
Affiliation:
Department of Chemistry, Princeton University, Princeton, New Jersey 08540, USA
R. J. Cava*
Affiliation:
Department of Chemistry, Princeton University, Princeton, New Jersey 08540, USA
*
a)Address all correspondence to these authors. e-mail: yoey@princeton.edu
Get access

Abstract

Previously known to form only under high pressure synthetic conditions, here we report that the T′-type 214-structure cuprate based on the rare earth atom Tb is stabilized for ambient pressure synthesis through partial substitution of Pd for Cu. The new material is obtained in purest form for mixtures of nominal composition Tb1.96Cu0.8Pd0.2O4. The refined formula, in orthorhombic space group Pbca, with a = 5.5117(1) Å, b = 5.5088(1) Å, and c = 11.8818(1) Å, is Tb2Cu0.83Pd0.17O4. An incommensurate structural modulation is seen along the a axis by electron diffraction and high resolution imaging. Magnetic susceptibility measurements reveal long-range antiferromagnetic ordering at 7.9 K, with a less pronounced feature at 95 K; a magnetic moment reorientation transition is observed to onset at a field of approximately 1.1 T at 3 K. The material is an n-type semiconductor.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Müller-Buschbaum, V.H. and Wollschläger, W.: Zur Kristallstruktur von Nd2CuO4. Z. Anorg. Allg. Chem. 414, 76 (1975).CrossRefGoogle Scholar
Obradors, X., Visani, P., de la Torre, M.A., Maple, M.B., Tovar, M., Perez, F., Bordet, P., Chenavas, J., and Chateigner, D.: Rare-earth magnetic ordering in the R2CuO4 cuprates (R = Tb, Dy, Ho, Er, and Tm). Physica C 213, 81 (1993).CrossRefGoogle Scholar
Okada, H., Takano, M., and Takeda, Y.: Magnetic properties of Nd2CuO4-type R2CuO4 (R = Y, Dy, Ho, Er, Tm) synthesized under high pressure: Weak ferromagnetism of Y2CuO4. Physical Review B 42, 6813 (1990).Google Scholar
Thompson, J.D., Cheong, S.W., Brown, S.E., Fisk, Z., Oseroff, S.B., Tovar, M., Vier, D.C., and Schultz, S.: Magnetic properties of Gd2CuO4 crystals. Physical Review B, 39, 6660 (1989).CrossRefGoogle ScholarPubMed
Tovar, M., Obradors, X., Pérez, F., Oseroff, S.B., Duro, R.J., Rivas, J., Chateigner, D., Bordet, P., and Chenavas, J.: Weak ferromagnetism and spin-glass-like behavior in Tb2CuO4. J. Appl. Phys. 70, 6095 (1991).Google Scholar
Tokura, Y., Takagi, H., and Uchida, S.: A superconducting copper oxide compound with electrons as the charge carriers. Nature 337, 345 (1989).CrossRefGoogle Scholar
Maple, M.B.: Electron-doped high T C superconductors. MRS Bull. 15, 60 (1990).Google Scholar
Okada, H., Takano, M., and Takeda, Y.: Synthesis of Nd2CuO4-type R2CuO4 (R = Y, Dy, Ho, Er, Tm) under high pressure. Physica C 166, 111 (1990).Google Scholar
Bordet, P., Capponi, J.J., Chaillout, C., Chateigner, D., Chenavas, J., Fournier, T., Hodeau, J.L., Marezio, M., Perroux, M., Thomas, G., and Varela, A.: High pressure synthesis and structural study of R2CuO4 compounds with R = Y, Tb, Dy, Ho, Er, Tm. Physica C 193, 178 (1992).Google Scholar
Luo, H.M., Hsu, Y.Y., Lin, B.N., Chi, Y.P., Lee, T.J., and Ku, H.C.: Correlation between weak ferromagnetism and crystal symmetry in Gd2CuO4-type cuprates. Physical Review B 60, 119 (1999).CrossRefGoogle Scholar
Braden, M., Paulus, W., Cousson, A., Vigoureux, P., Heger, G., Goukassov, A., Bourges, P., and Petitgrand, D.: Structure analysis of Gd2CuO4: A new modification of the T′ phase. Europhys. Lett. 25, 625 (1994).Google Scholar
Makarova, I.P., Simonov, V.I., Blomberg, M.K., and Merisalo, M.J.: X-ray diffraction study of Nd2CuO4 single crystals at 20 K. Acta Crystallogr. B 52, 93 (1996).Google Scholar
Rouco, A., Obradors, X., Tovar, M., Bordet, P., Chateigner, D., and Chenavas, J.: Magnetic-field-induced weak ferromagnetic order in Y2CuO4. Europhys. Lett. 20, 651 (1992).Google Scholar