Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-15T01:47:37.908Z Has data issue: false hasContentIssue false

Stable thin film resistors using double layer structure

Published online by Cambridge University Press:  03 March 2011

Q.X. Jia
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
H.J. Lee
Affiliation:
Department of Electrical and Computer Engineering, State University of New York at Buffalo, Buffalo, New York 14260
E. Ma
Affiliation:
Department of Electrical and Computer Engineering, State University of New York at Buffalo, Buffalo, New York 14260
W.A. Anderson
Affiliation:
Department of Electrical and Computer Engineering, State University of New York at Buffalo, Buffalo, New York 14260
F.M. Collins
Affiliation:
Ohmtek, Inc. 2160 Liberty Drive, Niagara Falls, New York 14304
Get access

Abstract

Highly stable bilayer thin film resistors, which consist of an underlying layer of tantalum nitride and of a capping layer of ruthenium oxide, were developed by taking advantage of the desired characteristics of two different materials in a single system. The resistors fabricated in such a way were highly stable under power loading or thermal cycling. Resistors with one digit temperature coefficient of resistance (TCR) could be easily controlled by the layer thickness ratio of the tantalum nitride to the ruthenium oxide and the ex situ annealing temperature or duration. Auger electron spectroscopy depth profile on the thin films indicates that the ruthenium oxide layer is well defined for the as-deposited form. Nevertheless, interdiffusion takes place after thermal treatment of the bilayer which is used to tune the temperature coefficient of resistance and to stabilize the resistance of the resistors.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Pike, G. E. and Seager, C. H., J. Appl. Phys. 48, 5152 (1977).CrossRefGoogle Scholar
2Chen, T. M., Su, S. F., and Smith, D., Solid State Electron. 25, 821 (1982).CrossRefGoogle Scholar
3Gofuku, E., Ogama, T., and Takasago, H., J. Appl. Phys. 66, 6126 (1989).CrossRefGoogle Scholar
4Zelenka, J., Chudoba, V., Rehak, J., and Rohacek, K., Thin Solid Films 200, 239 (1991).CrossRefGoogle Scholar
5Gawalek, W., Thin Solid Films 116, 205 (1984).CrossRefGoogle Scholar
6Au, C. L., Anderson, W. A., Schmitz, D. A., Flassayer, J. C., and Collins, F. M., J. Mater. Res. 5, 1224 (1990).CrossRefGoogle Scholar
7Ferraris, G. P., Thin Solid Films 38, 21 (1976).CrossRefGoogle Scholar
8Ostrander, W. J., Verhoef, J., and Bos, L. W., IEEE Trans. Parts, Hybrids, Packag. 9, 155 (1973).CrossRefGoogle Scholar
9Kolawa, E., So, F. C. T., Pan, E. T. S., and Nicolet, M. A., Appl. Phys. Lett. 50, 854 (1987).CrossRefGoogle Scholar
10Krusin-Elbaum, L., Wittmer, M., and Yee, D. S., Appl. Phys. Lett. 50, 1879 (1987).CrossRefGoogle Scholar
11Green, M. L., Gross, M. E., Papa, L. E., Schones, K. J., and Brasen, D., J. Electrochem. Soc. 132, 2677 (1985).CrossRefGoogle Scholar
12Vadimsky, R. G., Frankenthal, R. P., and Thompson, D. E., J. Electrochem. Soc. 126, 2017 (1979).CrossRefGoogle Scholar
13Saito, S. and Kuramasu, K., Jpn. J. Appl. Phys. 31, 135 (1992).Google Scholar
14Jia, Q. X., Shi, Z. Q., Jiao, K. L., Anderson, W. A., and Collins, F. M., Thin Solid Films 196, 29 (1991).CrossRefGoogle Scholar
15Jia, Q. X., Jiao, K. L., Anderson, W. A., and Collins, F. M., Mater. Sci. Eng. B18, 220 (1993).CrossRefGoogle Scholar
16Jia, Q. X., Jiao, K. L., Anderson, W. A., and Collins, F. M., Mater. Sci. Eng. B20, 301 (1993).CrossRefGoogle Scholar