Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T02:23:40.408Z Has data issue: false hasContentIssue false

Stepwise accumulation of layers of aptamer-ornamented ferritins using biomimetic layer-by-layer

Published online by Cambridge University Press:  31 January 2011

Ken-Ichi Sano
Affiliation:
Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, and Japan Science and Technology Agency, Koto, Tokyo 135-8550, Japan
Kiyotaka Shiba*
Affiliation:
Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, and Japan Science and Technology Agency, Koto, Tokyo 135-8550, Japan
*
a)Address all correspondence to this author. e-mail: kshiba@jfcr.or.jp
Get access

Abstract

Biomimetic layer-by-layer (BioLBL) is a layering method in which the binding and mineralization activities of a peptide aptamer are alternately used to accumulate layers of aptamer-displaying nanomaterials and thin mineral strata. We previously demonstrated this in aqua nanofabrication with BioLBL using a recombinant ferritin that displays an aptamer for titanium (minTBP-1) [K. Sano et al.: J. Am. Chem. Soc. 128, 1717 (2006); K. Sano et al.: Nano Lett.7, 3200 (2007)]. To expand the versatility of BioLBL, here we prepared a modified ferritin that was chemically ornamented with minTBP-1 and showed that BioLBL enables the formation of multiple layers of the chemically modified ferritin in a stepwise manner.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Iler, R.K.: Multilayers of colloidal particles. J. Colloid Interface Sci. 21, 569 1966Google Scholar
2Decher, G., Hong, J.D.: Build-up of ultrathin multilayer films by a self-assembly process. I. Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromol. Chem. Macromol. Symp. 46, 321 1991Google Scholar
3Lvov, Y., Decher, G., Moehwald, H.: Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine). Langmuir 9, 481 1993Google Scholar
4Lvov, Y., Ariga, K., Onda, M., Ichinose, I., Kunitake, T.: Alternate assembly of ordered multilayers of SiO2 and other nanoparticles and polyions. Langmuir 13, 6195 1997Google Scholar
5Lvov, Y.M., Kamau, G.N., Zhou, D-L., Rusling, J.F.: Assembly of electroactive ordered multilayer films of cobalt phthalocyanine tetrasulfonate and polycations. J. Colloid Interface Sci. 212, 570 1999CrossRefGoogle ScholarPubMed
6Lvov, Y., Sukhorukov, G.B.: Protein architecture: Assembly of ordered films by means of alternated adsorption. Membr. Cell Biol. 11, 277 1997Google Scholar
7Lvov, Y., Decher, G., Sukhorukov, G.: Assembly of thin films by means of successive deposition of alternate layers of DNA and poly(allylamine). Macromolecules 26, 5396 1993CrossRefGoogle Scholar
8Stockton, W.B., Rubner, M.F.: Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules 30, 2717 1997CrossRefGoogle Scholar
9Serizawa, T., Hamada, K.I., Kitayama, T., Fujimoto, N., Hatada, K., Akashi, M.: Stepwise stereocomplex assembly of stereoregular poly(methyl methacrylate)s on a substrate. J. Am. Chem. Soc. 122, 1891 2000Google Scholar
10Lee, J-S., Cho, J., Lee, C., Kim, I., Park, J., Kim, Y-M., Shin, H., Lee, J., Caruso, F.: Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties. Nat. Nanotechnol 2, 790 2007Google Scholar
11Picart, C., Mutterer, J., Richert, L., Luo, Y., Prestwich, G.D., Schaaf, P., Voegel, J.C., Lavalle, P.: Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers. Proc. Nat. Acad. Sci. U.S.A. 99, 12531 2002CrossRefGoogle ScholarPubMed
12Elbert, D.L., Herbert, C.B., Hubbell, J.A.: Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces. Langmuir 15, 5355 1999CrossRefGoogle Scholar
13Pardo-Yissar, V., Katz, E., Lioubashevski, O., Willner, I.: Layered polyelectrolyte films on Au electrodes: Characterization of electron-transfer features at the charged polymer interface and application for selective redox reactions. Langmuir 17, 1110 2001Google Scholar
14Picart, C., Lavalle, P., Hubert, P., Cuisinier, F.J.G., Decher, G., Schaaf, P., Voegel, J.C.: Buildup mechanism for poly(l-lysine)/hyaluronic acid films onto a solid surface. Langmuir 17, 7414 2001Google Scholar
15Sano, K., Sasaki, H., Shiba, K.: Utilization of the pleiotropy of a peptidic aptamer to fabricate heterogeneous nanodot-containing multilayer nanostructures. J. Am. Chem. Soc. 128, 1717 2006CrossRefGoogle ScholarPubMed
16Sano, K., Yoshii, S., Yamashita, I., Shiba, K.: In aqua structuralization of a 3-dimensional configuration using biomolecules. Nano Lett. 7, 3200 2007CrossRefGoogle Scholar
17Sano, K., Shiba, K.: A hexapeptide motif that electrostatically binds to the surface of titanium. J. Am. Chem. Soc. 125, 14234 2003Google Scholar
18Sano, K., Sasaki, H., Shiba, K.: Specificity and biomineralization activities of Ti-binding peptide-1 (TBP-1). Langmuir 21, 3090 2005Google Scholar
19Hayashi, T., Sano, K., Shiba, K., Kumashiro, Y., Iwahori, K., Yamashita, I., Hara, M.: Mechanism underlying specificity of proteins targeting inorganic materials. Nano Lett. 6, 515 2006CrossRefGoogle ScholarPubMed
20Brown, S., Sarikaya, M., Johnson, E.: A genetic analysis of crystal growth. J. Mol. Biol. 299, 725 2000CrossRefGoogle ScholarPubMed
21Lee, S.W., Mao, C., Flynn, C.E., Belcher, A.M.: Ordering of quantum dots using genetically engineered viruses. Science 296, 892 2002CrossRefGoogle ScholarPubMed
22Naik, R.R., Stringer, S.J., Agarwal, G., Jones, S.E., Stone, M.O.: Biomimetic synthesis and patterning of silver nanoparticles. Nat. Mater. 1, 169 2002Google Scholar
23Flynn, C.E., Mao, C., Hayhurst, A., Williams, J.L., Georgiou, G., Iverson, B., Belcher, A.M.: Synthesis and organization of nanoscale II–VI semiconductor materials using evolved peptide specificity and viral capsid assembly. J. Mater. Chem. 13, 2414 2003CrossRefGoogle Scholar
24Mao, C., Solis, D.J., Reiss, B.D., Kottmann, S.T., Sweeney, R.Y., Hayhurst, A., Georgiou, G., Iverson, B., Belcher, A.M.: Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303, 213 2004Google Scholar
25Umetsu, M., Mizuta, M., Tsumoto, K., Ohara, S., Takami, S., Watanabe, H., Kumagai, I., Adschiri, T.: Bioassisted room-temperature immobilization and mineralization of zinc oxide—The structural ordering of ZnO nanoparticles into a flower-type morphology. Adv. Mater. 17, 2571 2005Google Scholar
26Banyard, S.H., Stammers, D.K., Harrison, P.M.: Electron density map of apoferritin at 2.8-A resolution. Nature 271, 282 1978CrossRefGoogle Scholar
27Mann, S., Williams, J.M., Treffry, A., Harrison, P.M.: Reconstituted and native iron-cores of bacterioferritin and ferritin. J. Mol. Biol. 198, 405 1987Google Scholar
28Meldrum, F.C., Wade, V.J., Nimmo, D.L., Heywood, B.R., Mann, S.: Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature 349, 684 1991Google Scholar
29Meldrum, F.C., Heywood, B.R., Mann, S.: Magnetoferritin: In vitro synthesis of a novel magnetic protein. Science 257, 522 1992CrossRefGoogle ScholarPubMed
30Meldrum, F.C., Douglas, T., Levi, S., Arosio, P., Mann, S.: Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins. J. Inorg. Biochem. 58, 59 1995CrossRefGoogle ScholarPubMed
31Douglas, T., Dickson, D.P., Betteridge, S., Charnock, J., Garner, C.D., Mann, S.: Synthesis and structure of an iron(iii) sulfide-ferritin bioinorganic nanocomposite. Science 269, 54 1995Google Scholar
32Wong, K.K.W., Mann, S.: Biomimetic synthesis of cadmium sulfide-ferritin nanocomposites. Adv. Mater. 8, 928 1996Google Scholar
33Douglas, T., Stark, V.T.: Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin. Inorg. Chem. 39, 1828 2000CrossRefGoogle ScholarPubMed
34Tsukamoto, R., Iwahori, K., Muraoka, M., Yamashita, I.: Synthesis of Co3O4 nanoparticles using the cage-shaped protein, apoferritin. Bull. Chem. Soc. Jpn. 78, 2075 2005CrossRefGoogle Scholar
35Okuda, M., Iwahori, K., Yamashita, I., Yoshimura, H.: Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin. Biotechnol. Bioeng. 84, 187 2003CrossRefGoogle ScholarPubMed
36Okuda, M., Kobayashi, Y., Suzuki, K., Sonoda, K., Kondoh, T., Wagawa, A., Kondo, A., Yoshimura, H.: Self-organized inorganic nanoparticle arrays on protein lattices. Nano Lett. 5, 991 2005CrossRefGoogle ScholarPubMed
37Iwahori, K., Yamashita, I.: The synthesis of nanoparticles and nanowires by bio-template platform, cage-shaped protein supramolecules. Recent Res. Devel. Bioeng. 7, 41 2005Google Scholar
38Yamashita, I.: Biological path to nanoelectronics devices. Proc. SPIE 5650, 1 2005Google Scholar
39Yamada, K., Yoshii, S., Kumagai, S., Fujiwara, I., Nishio, K., Okuda, M., Matsukawa, N., Yamashita, I.: High-density and highly surface selective adsorption of protein–nanoparticle complexes by controlling electrostatic interaction. Jpn. J. Appl. Phys. 45, 4259 2006Google Scholar
40Miura, A., Hikono, T., Matsumura, T., Yano, H., Hatayama, T., Uraoka, Y., Fuyuki, T., Yoshii, S., Yamashita, I.: Floating nanodot gate memory devices based on biomineralized inorganic nanodot array as a storage node. Jpn. J. Appl. Phys. 45, L1 2006Google Scholar
41Kwon, M., Choi, H., Chang, M., Jo, M., Jung, S-J., Hwang, H.: Droplet evaporation-induced ferritin self-assembled monolayer as a template for nanocrystal flash memory. Appl. Phys. Lett. 90, 193512 2007Google Scholar
42Hoinville, J., Bewick, A., Gleeson, D., Jones, R., Kasyutich, O., Mayes, E., Nartowski, A., Warne, B., Wiggins, J., Wong, K.: High density magnetic recording on protein-derived nanoparticles. J. Appl. Phys. 93, 7187 2003CrossRefGoogle Scholar
43Takeda, S., Ohta, M., Ebina, S., Nagayama, K.: Cloning, expression and characterization of horse l-ferritin in Escherichia coli. Biochim. Biophys. Acta 1174, 218 1993CrossRefGoogle ScholarPubMed
44Sano, K., Ajima, K., Iwahori, K., Yudasaka, M., Iijima, S., Yamashita, I., Shiba, K.: Endowing a ferritin-like cage protein with high affinity and selectivity for certain inorganic materials. Small 1, 826 2005CrossRefGoogle ScholarPubMed
45Yamashita, I., Kirimura, H., Okuda, M., Nishio, K., Sano, K-I., Shiba, K., Hayashi, T., Hara, M., Mishima, Y.: Selective nanoscale positioning of ferritin and nanoparticles by means of target-specific peptides. Small 2, 1148 2006CrossRefGoogle ScholarPubMed
46Sambrook, J., Fritsch, E.F., Maniatis, T.: Molecular Cloning: A Laboratory Manual 2nd ed.Cold Spring Harbor Laboratory Cold Spring Harbor, NY 1989Google Scholar