Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T04:24:04.705Z Has data issue: false hasContentIssue false

Strontium and calcium zirconyl citrates as precursors for the low-temperature synthesis of SrZrO3 and CaZrO3 fine powders

Published online by Cambridge University Press:  31 January 2011

M. Rajendran
Affiliation:
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India
M. Subba Rao
Affiliation:
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India
Get access

Abstract

Synthesis and the thermal decomposition behavior of new molecular precursors, strontium, and calcium zirconyl citrates are presented. The pathway to the metazirconate formation has been found to proceed through a multistep process. The precursors yield SrZrO3 and CaZrO3 fine powders at temperatures as low as 650 °C. Physico-chemical, spectroscopic, thermoanalytical, and microscopic techniques have enabled the identification of the sequence of events leading to the perovskite formation and proposition of a thermolysis scheme. Retention of the molecular level mixing of the metal ions during the course of the precursor decomposition is supported by these techniques. Prior to the formation of MZrO3 (M = Sr and Ca) an ionic oxycarbonate, M2Zr2O5CO3 (M = Sr and Ca), intermediate is produced by the thermal decomposition of the citrate precursors.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Muller, O. and Roy, R., The Major Ternary Structural Families (Springer-Verlag, New York, 1974).CrossRefGoogle Scholar
2.Longo, V., Richiasdiello, F., and Shaizero, O., Science of Ceramics-II, edited by Carlsson, R. and Carlsson, S. (Swedish Ceramic Society, 1981), p. 467.Google Scholar
3.Gopalakrishnamurthy, H. S., Rao, M. Subba, and Kutty, T. R. N., J. Inorg. Nucl. Chem. 37, 891 (1975).CrossRefGoogle Scholar
4.Gopalakrishnamurthy, H. S., Rao, M. Subba, and Kutty, T. R. N., J. Inorg. Nucl. Chem. 37, 1875 (1975).CrossRefGoogle Scholar
5.Gopalakrishnamurthy, H. S., Rao, M. Subba, and Kutty, T. R. N., J. Inorg. Nucl. Chem. 38, 417 (1976).CrossRefGoogle Scholar
6.Gopalakrishnamurthy, H. S., Rao, M. Subba, and Kutty, T. R. N., J. Inorg. Nucl. Chem. 38, 596 (1976).CrossRefGoogle Scholar
7.Gangadevi, T., Rao, M. Subba, and Kutty, T. R. N., J. Thermal Anal. 19, 321 (1980).CrossRefGoogle Scholar
8.Gangadevi, T., Rao, M. Subba, and Kutty, T. R. N., Monatsch. Chemie 117, 21 (1986).CrossRefGoogle Scholar
9.Gangadevi, T., Rao, M. Subba, and Kutty, T. R. N., Indian J. Chem. 23A, 946 (1984).Google Scholar
10.Rajendran, M. and Rao, M. Subba, Bull. Mater. Sci. 14 (2), 367375 (1991).CrossRefGoogle Scholar
11.Rajendran, M. and Rao, M. Subba, J. Solid State Chem. 113, 239 (1994).CrossRefGoogle Scholar
12.Rajendran, M. and Rao, M. Subba, J. Mater. Res. 9, 22772284 (1994).CrossRefGoogle Scholar
13.Rajendran, M., Ph.D. Thesis, Indian Institute of Science, 1992.Google Scholar
14.Thambi, K. R., Rao, M. Subba, Schwarz, W., Gratzel, M., and Kiwi, J., J. Chem. Soc. Faraday Trans. 84, 1703 (1988).CrossRefGoogle Scholar
15.Asata, E., Katsura, K., Mikuriya, M., Fujii, T., and Reedijk, J., Inorg. Chem. 32, 53225329 (1993) and references therein.CrossRefGoogle Scholar