Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T00:26:09.242Z Has data issue: false hasContentIssue false

Structural characterization of damage in Si(100) produced by MeV Si+ ion implantation and annealing

Published online by Cambridge University Press:  31 January 2011

M. K. El-Ghor
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, Tennessee 37831
O. W. Holland
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, Tennessee 37831
C. W. White
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, Tennessee 37831
S. J. Pennycook
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, Tennessee 37831
Get access

Abstract

Buried amorphous layers were produced by implantation of MeV Si+ ions in silicon single crystal at room temperature and liquid nitrogen temperature. The damage is characterized structurally both in the as-implanted condition and after post-implantation furnace annealing. Growth of the amorphous layer during room temperature implantation is found to occur by a layer-by-layer mechanism with relatively sharp interfacial transition regions. A wide region ahead of the buried amorphous region extending to the surface is observed to be free of any extended defects. Recrystallization of the damaged region during thermal annealing occurs by solid-phase epitaxial growth at both interfaces. A lower growth velocity is found at the upper interface, which is attributed to a higher hairpin dislocation density grown-in at this interface. Results of irradiation at liquid nitrogen temperature, on the other hand, show that nucleation and growth of the amorphous damage occurs over a wide region and is not confined to the interfacial region. This results in a very diffuse upper interface composed of a mixture of amorphous and crystalline phases. Substantial reordering is observed in this mixed-phase region after 400°C annealing, even though this temperature is too low for normal interfacial solid-phase epitaxial growth. Cross-sectional transmission electron microscopy, as well as Rutherford backscattering spectroscopy, were used in this study.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Terrill, K.W., Byrne, P. F., Zappe, H. P., Cheung, N.W., and Hu, C., IEDM Tech. Dig., 406 (1984).Google Scholar
2Mogro-Campero, A. and Love, R. P., J. Electrochem. Soc. 131, 655 (1984).CrossRefGoogle Scholar
3Wong, H., Cheung, N.W., Chu, P. K., Liu, J., and Mayer, J.W., Appl. Phys. Lett. 52, 1023 (1988).CrossRefGoogle Scholar
4Seshan, K. and Washburn, J., Radiat. Eff. 37, 147 (1978).CrossRefGoogle Scholar
5Kappert, H. F., Pfannkuche, N., Heidemann, K. F., and E te Kaat, Radiat. Eff. 45, 33 (1979).CrossRefGoogle Scholar
6Maher, D. M., Knoell, R.V., Ellington, M. B., and Jacobson, D. C., Mater. Res. Soc. Symp. Proc. 52, 93 (1986).CrossRefGoogle Scholar
7Mazey, D. J., Nelson, R. S., and Barnes, R. S., Philos. Mag. 17, 1145.(1968).CrossRefGoogle Scholar
8Lambert, J. A. and Dobson, P.S., Philos. Mag. A 44, 1043 (1981).CrossRefGoogle Scholar
9Krimmel, E. F., Oppolzer, H., Runge, H., and Wondrak, W., Phys. Status Solidi 66, 565 (1981).CrossRefGoogle Scholar
10Carter, C., Maszara, W., Sadana, D. K., Rozgonyi, G. A., Liu, J., and Wortman, J., Appl. Phys. Lett. 44, 459 (1983).CrossRefGoogle Scholar
11Narayan, J., Holland, O.W., and Appleton, B. R., J. Vac. Sci. Technol. B 1, 871 (1983).CrossRefGoogle Scholar
12Maszara, W., Carter, C., Sadana, D. K., Liu, J., Ozguz, V., Wortman, J., and Rozgonyi, G. A., Mater. Res. Soc. Symp. Proc. 23, 285 (1984).CrossRefGoogle Scholar
13EerNisse, E. P., in Ion Implantation in Semiconductors, edited by Ruge, I. and Graul, J.(Springer-Verlag, Berlin, 1971), p. 17.CrossRefGoogle Scholar
14Spaepen, F. and Turnbull, D., in Laser-Solid Interactions and Laser Processing, edited by Ferris, S. D., Leamy, H. J., and Poate, J. M. (American Institute of Physics, New York, 1978), p. 73.Google Scholar
15Csepregi, L., Kennedy, E. F., Gallagher, T. J., Mayer, J.W., and Sigmon, T.W., J. Appl. Phys. 48, 4234 (1977).CrossRefGoogle Scholar
16Linnros, J., Elliman, R.G., and Brown, W.L., J. Mater. Res. 3, 1208 (1988).CrossRefGoogle Scholar
17Holland, O.W, El-Ghor, M. K., and White, C.W., Appl. Phys. Lett. 53, 1282 (1988).CrossRefGoogle Scholar
18Holland, O.W., Appl. Phys. Lett. 54, 320 (1989).CrossRefGoogle Scholar
19Holland, O.W., El-Ghor, M. K., and White, C.W., Mater. Res. Soc. Symp. Proc. (1989) (in press).Google Scholar
20Olson, G.L. and Roth, J. A., Materials Science Reports 3 (1988).CrossRefGoogle Scholar
21Howe, L. M. and Rainville, M. H., Nucl. Instrum. Methods 182/ 183, 143 (1981).CrossRefGoogle Scholar
22Ruault, M. O., Chaumont, J., Penisson, J. M., and Bourret, A., Philos. Mag. 50, 667 (1984).CrossRefGoogle Scholar
23Nelson, R. S., in European Conference on Ion Implantation (Peter Peregrinus Limited, England, 1970), p. 212.Google Scholar
24EerNisse, E. P., in Ion Implantation in Semiconductors and Other Materials, edited by Crowder, B.L. (Plenum Press, New York, 1973), p. 531.CrossRefGoogle Scholar
25 See, for example, the following: Hubler, G. K., Waddell, C.N., Spitzer, W.G., Fredrickson, J.E., Prussin, S., and Wilson, R.G., J. Appl. Phys. 50, 3294 (1979); C.N. Waddell, W.G. Spitzer, G. K. Hubler, and J.E. Fredrickson, J. Appl. Phys. 53, 5851 (1982); D.G. Beanland and J.S. Williams, Radiat. Eff. 36, 25 (1978); P. A. Thompson, A. Golanski, H. K. Hangen, L. M. Howe, and J.A. David, Radiat. Eff. Lett. 50, 125 (1980); S. Roorda, S. Doom, W. C. Sinke, P. M. L. O. Scholte, and E. van Loenen, Phys. Rev. Lett. 62, 1880 (1989).CrossRefGoogle Scholar
26Biersack, J. P., Nucl. Instrum. Methods 174, 257 (1980).CrossRefGoogle Scholar
27Sjoreen, T.P., Holland, O.W., El-Ghor, M.K., and White, C.W., Mater. Res. Soc. Symp. Proc. 128, 593 (1989).CrossRefGoogle Scholar
28Gibbons, J. F., Proc. of the IEEE 60, 1062 (1972).CrossRefGoogle Scholar
29Swanson, M.L., Parsons, J.R., and Hoelke, C.W., Radiat. Eff. 9, 249 (1971)CrossRefGoogle Scholar