Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T21:24:12.500Z Has data issue: false hasContentIssue false

Structural characterization of Fe–C coatings prepared by reactive triode-magnetron sputtering

Published online by Cambridge University Press:  31 January 2011

Isabelle Jouanny
Affiliation:
Institut Jean Lamour, UMR 7198 CNRS–Nancy-Université–UPV-Metz, Ecole des Mines de Nancy, 54042 Nancy Cedex, France
Valérie Demange*
Affiliation:
Sciences Chimiques de Rennes UMR 6226 CNRS–Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
Jaafar Ghanbaja
Affiliation:
Institut Jean Lamour, UMR 7198 CNRS–Nancy-Université–UPV-Metz, Ecole des Mines de Nancy, 54042 Nancy Cedex, France; and Service Commun de Microscopies Electroniques et Microanalyses X, 54506 Vandoeuvre-Lès-Nancy, France
Elisabeth Bauer-Grosse
Affiliation:
Institut Jean Lamour, UMR 7198 CNRS–Nancy-Université–UPV-Metz, Ecole des Mines de Nancy, 54042 Nancy Cedex, France
*
a)Address all correspondence to this author. e-mail: valerie.demange@univ-rennes1.fr
Get access

Abstract

Fe1–xCx coatings were synthesized by triode magnetron sputtering of an iron target in a methane/argon atmosphere with a large range of composition (x = 0.3 to 0.6 ± 0.06). Film surfaces were characterized by grazing incidence x-ray diffraction, scanning and transmission electron microscopies, and electron energy loss spectroscopy, to study effects of the variation of the methane gas flow rate on their structural properties. The coatings were constituted of the ε-Fe3C carbide (x = 0.3 and 0.36), in which carbon atoms are in octahedral sites, and of nanocomposite structure constituted of disordered and crystalline carbide nanograins embedded in a carbon matrix made of an amorphous and poorly crystallized graphenelike material (x = 0.55 and 0.60). In situ annealing of the nanocomposite Fe0.45C0.55 coating led to the formation of carbides θ-Fe3C and Fe7C3 (with carbon atoms in prismatic sites) and C-rich cubic carbide possibly related to the τ2-Fe2C7 compound.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Honeycombe, R.W.K., Bhadeshia, H.K.D.H.Steels: Microstructure and Properties 2nd ed. (Edward Arnold Publishers, London, UK 1995)Google Scholar
2.Neckel, A.The Physics and Chemistry of Carbides, Nitrides and Borides edited by R. Freer (Kluwer, DordrechtThe Netherlands 1990)458Google Scholar
3.Tajima, S., Hirano, S.Synthesis and properties of Fe3C film by RF magnetron sputtering. J. Mater. Sci. 28, 2715 (1993)CrossRefGoogle Scholar
4.Lee, Y.H., Han, T.C., Huang, J.C.A.Magnetic properties of Fe3C nanograins embedded in carbon matrix. J. Appl. Phys. 93, 8462 (2003)CrossRefGoogle Scholar
5.Lee, Y., Han, T., Wur, C.S.Resistance and magnetoresistance of annealed amorphous carbon films containing Fe3C nanograins. J. Magn. Magn. Mater. 272–276, 2178 (2004)CrossRefGoogle Scholar
6.Babonneau, D., Briatico, J., Petroff, F., Cabioc'h, T., Naudon, A.Structural and magnetic properties of FexC1–x nanocomposite thin films. J. Appl. Phys. 87, 3432 (2000)CrossRefGoogle Scholar
7.Safi, I.Recent aspects concerning DC reactive magnetron sputtering of thin films: A review. Surf. Coat. Technol. 127, 203 (2000)CrossRefGoogle Scholar
8.Sakai, R., Shimada, Y.Coercive forces and magnetorestriction of Fe–C films deposited on ZnO substrates. Phys. Status Solidi A 113, K131 (1989)Google Scholar
9.Zhigalov, V.S., Bayukov, O.A., Iskhakov, R.S., Frolov, G.I.Phase transformations in FeC films. Phys. Met. Metall. 93, 289 (2002)Google Scholar
10.Kazama, N., Heiman, N., White, R.L.Magnetic properties of amorphous FeC thin films. J. Appl. Phys. 49, 1706 (1978)Google Scholar
11.Bauer-Grosse, E., Le Caer, G.Structural evolution of sputtered amorphous Fe1–xCx films for 0.19 ≤ x ≤ 0.49. Philos. Mag. B 56, 485 (1987)CrossRefGoogle Scholar
12.Babonneau, D., Cabioc'h, T., Denanot, M.F., Naudon, A.Microstructural study of a C–Fe alloy synthesized by ion-beam sputtering co-deposition. Appl. Phys. Lett. 74, 800 (1999)Google Scholar
13.Lee, Y.H., Han, T.C., Huang, J.C.A., Lin, C.R.Analysis of microstructure of magnetic Fe3C nanograins embedded in amorphous carbon films. J. Appl. Phys. 94, 1975 (2003)CrossRefGoogle Scholar
14.Corbella, C., Bertran, E., Polo, M.C., Pascual, E., Andújar, J.L.Structural effects of nanocomposite films of amorphous carbon and metal deposited by pulsed-DC reactive magnetron sputtering. Diamond Relat. Mater. 16, 1828 (2007)CrossRefGoogle Scholar
15.Jouanny, I., Billard, A., Loi, T.H., Demange, V., Bauer-Grosse, E.Sputtered Fe1–x(N1–yCy)x films obtained in various (Ar–N2–CH4) reactive plasmas. Surf. Coat. Technol. 200, 1690 (2005)CrossRefGoogle Scholar
16.Jouanny, I. Study of iron carbides, nitrides and carbonitrides prepared by magnetron sputtering. Ph.D. Thesis (Institut National Polytechnique de Lorraine, Nancy, France 2006 http://www.scd.inpl-nancy.fr/theses/2006_JOUANNY_I.pdf)Google Scholar
17.Benedict, J., Anderson, R., Klepeis, S.J.Recent developments in the use of the tripod polisher for TEM specimen preparationSpecimen Preparation for Transmission Electron Microscopy of Materials III edited by R. Anderson, B. Tracy, and J. Bravman (Mater. Res. Symp. Proc. 254, Pittsburgh, PA 1992)121Google Scholar
18.Yakel, H.L.Crystal structures of stable and metastable iron containing carbides. Int. Met. Rev. 30, 17 (1985)Google Scholar
19.Hofer, L.J.E., Cohn, E.M., Peebles, W.C.The modifications of the carbide Fe2C: Their properties and identification. J. Am. Chem. Soc. 71, 189 (1949)CrossRefGoogle Scholar
20.Jack, K.H.Results of further x-ray structural investigations of the iron carbon and iron nitrogen systems and of related interstitial alloys. Acta Crystallogr 3, 392 (1950)CrossRefGoogle Scholar
21.Franklin, R.E.The interpretation of diffuse x-ray diagrams of carbon. Acta Crystallogr 3, 107 (1950)CrossRefGoogle Scholar
22.Musil, J., Baroch, P., Vlček, J., Nam, K.H., Han, J.G.Reactive sputtering magnetron of thin films: Present status and trends. Thin Solid Films 475, 208 (2005)CrossRefGoogle Scholar
23.Schiffmann, K.I., Fryda, M., Goerigk, G., Lauer, R., Hinze, P., Bulack, A.Sizes and distances of metal clusters in Au-, Pt-, W- and Fe-containing diamond-like carbon hard coatings: A comparative study by small angle x-ray scattering, wide angle x-ray diffraction, transmission electron microscopy and scanning tunnelling microscopy. Thin Solid Films 347, 60 (1999)CrossRefGoogle Scholar
24.Misell, D.L., Atkins, A.J.Electron-energy loss spectra for first transition series. Philos. Mag. 27, 95 (1973)CrossRefGoogle Scholar
25.Egerton, R.F.Electron Energy Loss Spectroscopy in the Electron Microscope (Plenum Press, New York 1996)CrossRefGoogle Scholar
26.Fink, J.Recent developments in energy-loss spectroscopy. Adv. Electron. Electron Phys. 75, 121 (1989)CrossRefGoogle Scholar
27.Kovarik, P., Bourdon, E.B.D., Prince, R.H.Electron-energy-loss characterization of laser-deposited a-C, a-C:H, and diamond films. Phys. Rev. B 48, 12123 (1993)CrossRefGoogle ScholarPubMed
28.Stöckli, T., Bonard, J.M., Châtelain, A., Wang, Z.L., Stadelmann, P.Plasmon excitations in graphitic carbon spheres measured by EELS. Phys. Rev. B 61, 5751 (2000)CrossRefGoogle Scholar
29.Henrard, L., Stephan, O., Colliex, C.Electron energy loss study of plasmons excitations in curved carbon network. Synth. Met. 103, 2502 (1999)CrossRefGoogle Scholar
30.Joly-Pottuz, L., Vacher, B., Ohmae, N., Martin, J.M., Epicier, T.Anti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additives. Tribol. Lett. 30, 69 (2008)Google Scholar
31.Schmid, H.K.Phase identification in carbon and BN systems by EELS. Microsc. Microanal. Microstruct. 6, 99 (1995)CrossRefGoogle Scholar
32.Silva, S.R.P., Stolojan, V.Electron energy loss spectroscopy of carbonaceous materials. Thin Solid Films 488, 283 (2005)Google Scholar
33.Brydson, R., Sauer, H., Engel, W., Zeitler, E.EELS as a fingerprint of the chemical coordination of light-elements. Microsc. Microanal. Microstruct. 2, 159 (1991)CrossRefGoogle Scholar
34.Disko, M.M.Electron energy loss fine structure of carbides and nitridesMaterials Problem Solving with the Transmission Electron Microscope edited by L.W. Hobbs, K.H. Westmacott, and D.B. Williams (Mater. Res. Soc. Symp. Proc. 62, Pittsburgh, PA 1986)129Google Scholar
35.Mitterbauer, C., Hébert, C., Kothleitner, G., Hofer, F., Schattschneider, P., Zandbergen, H.W.Electron energy loss-near edge structure as a fingerprint for identifying chromium nitrides. Solid State Commun. 130, 209 (2004)CrossRefGoogle Scholar
36.Hofer, F., Warbichler, P., Scott, A., Brydson, R., Galesic, I., Kolbesen, B.Electron energy loss near edge structure on the nitrogen K-edge in vanadium nitrides. J. Microsc. Oxford 204, 166 (2001)CrossRefGoogle ScholarPubMed
37.Kihn, Y., Mirguet, C., Calmels, L.EELS studies of Ti-bearing materials and ab initio calculations. J. Electron Spectrosc. Relat. Phenom. 143, 117 (2005)CrossRefGoogle Scholar
38.Hamon, A.L., Verbeeck, J., Schryvers, D., Benedikt, J., Sanden, R.M.C.M v.d.ELNES study of carbon K-edge spectra of plasma deposited carbon films. J. Mater. Chem. 14, 2030 (2004)CrossRefGoogle Scholar
39.Tomita, S., Fujii, M., Hayashi, S., Yamamoto, K.Electron energy-loss spectroscopy of carbon onions. Chem. Phys. Lett. 305, 225 (1999)CrossRefGoogle Scholar
40.Colliex, C., Manoubi, T., Ortiz, C.Electron-energy-loss-spectroscopy near-edge fine-structures in the iron-oxygen system. Phys. Rev. B 44, 11402 (1991)CrossRefGoogle ScholarPubMed
41.Wang, F., Malac, M., Egerton, R.F.Energy-loss near-edge fine structures of iron nanoparticles. Micron 37, 316 (2006)Google Scholar
42.Wang, F., Malac, M., Egerton, R.F.Alternative methods of identifying the oxidation of metallic nanoparticles embedded in a matrix. Micron 38, 371 (2007)CrossRefGoogle ScholarPubMed
43.Bauer-Grosse, E., Frantz, C., Le Caer, G., Heiman, N.Formation of Fe7C3 and Fe5C2 type metastable carbides during the crystallization of an amorphous Fe75C25 alloy. J. Non-Cryst. Solids 44, 277 (1981)CrossRefGoogle Scholar
44.Bauer-Grosse, E., Le Caer, G.Crystallisation of amorphous Fe1–xCx alloys (0.30 ≤ x ≤ 0.32) and chemical twinning. J. Phys. F: Met. Phys. 16, 399 (1986)CrossRefGoogle Scholar
45.Bauer-Grosse, E., Le Caer, G.Structural model for commensurate and non-periodic carbides formed by crystallization of amorphous iron-carbon alloys. Mater. Sci. Eng. 97, 273 (1988)CrossRefGoogle Scholar
46.Komekyu, T., Matsumoto, T., Nagakura, S.Electron diffraction structure analysis of two kinds of new iron carbides with high carbon content. Mater. Trans., JIM 36, 1332 (1995)CrossRefGoogle Scholar
47.Kimura, Y., Kaito, C.Formation of new carbides with diamond structure from carbon film containing transition metal. Thin Solid Films 476, 65 (2005)CrossRefGoogle Scholar
48.Cusenza, S., Seibt, M., Schaaf, P.Deposition and properties of high-carbon iron films. Appl. Surf. Sci. 254, 955 (2007)CrossRefGoogle Scholar
49.He, K., Brown, A., Brydson, R., Edmonds, D.V.Analytical electron microscope study of the dissolution of the Fe3C iron carbide phase (cementite) during a graphitisation anneal of carbon steel. J. Mater. Sci. 41, 5235 (2006)Google Scholar
50.Hayashi, T., Hirono, S., Tomita, M., Umemura, S.Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon. Nature 381, 772 (1996)CrossRefGoogle Scholar
51.Babonneau, D., Cabioc'h, T., Naudon, A., Girard, J.C., Denanot, M.F.Silver nanoparticles encapsulated in carbon cages obtained by co-sputtering of the metal and graphite. Surf. Sci. 409, 358 (1998)Google Scholar
52.Gassner, G., Patscheider, J., Mayrhofer, P.H., Hegedus, E., Tóth, L., Kovacs, I., Pécs, B., Srot, V., Scheu, Ch., Mitterer, C.Structure of sputtered nanocomposite CrCx/a-C:H thin films. J. Vac. Sci. Technol., B 24, 1837 (2006)Google Scholar