Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T03:23:39.101Z Has data issue: false hasContentIssue false

Structural mechanisms underlying near-zero thermal expansion in β-eucryptite: A combined synchrotron x-ray and neutron Rietveld analysis

Published online by Cambridge University Press:  31 January 2011

Hongwu Xu
Affiliation:
Princeton Materials Institute and Department of Geosciences, Princeton University, Princeton, New Jersey 08544
Peter J. Heaney
Affiliation:
Princeton Materials Institute and Department of Geosciences, Princeton University, Princeton, New Jersey 08544
Douglas M. Yates
Affiliation:
Princeton Materials Institute and Department of Geosciences, Princeton University, Princeton, New Jersey 08544
Robert B. Von Dreele
Affiliation:
Manuel Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Mark A. Bourke
Affiliation:
Manuel Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

The structures of ordered and disordered β-eucryptite have been determined from Rietveld analysis of powder synchrotron x-ray and neutron diffraction data over a temperature range of 20 to 873 K. On heating, both materials show an expansion within the (001) plane and a contraction along the c axis. However, the anisotropic character of the thermal behavior of ordered β-eucryptite is much more pronounced than that of the disordered compound; the linear expansion coefficients of the ordered and disordered phases are αa = 7.26 × 10−6 K−1; αc = −16.35 × 10−6 K−1, and αa = 5.98 × 10−6 K−1; αc = −3.82 × 10−6 K−1, respectively. The thermal behavior of β-eucryptite can be attributed to three interdependent processes that all cause an increase in a but a decrease in c with increasing temperature: (i) Si/Al tetrahedral deformation, (ii) Li positional disordering, and (iii) tetrahedral tilting. Because disordered β-eucryptite does not exhibit tetrahedral tilting, the absolute values of its axial thermal coefficients are smaller than those for the ordered sample. At low temperatures, both ordered and disordered β-eucryptite exhibit a continuous expansion parallel to the c axis with decreasing temperature, whereas a remains approximately unchanged. Our difference Fourier synthesis reveals localization of Li ions below room temperature, and we suggest that repulsion between Li and Al/Si inhibits contraction along the a axes.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Buerger, M.J., Am. Mineral. 39, 600 (1954).Google Scholar
2.Palmer, D.C., in Silica, Reviews in Mineralogy Vol. 29, edited by Heaney, P.J., Prewitt, C.T., and Gibbs, G.V. (Mineralogical Society of America, Washington, DC, 1994), p. 83.CrossRefGoogle Scholar
3.Schulz, H., J. Am. Ceram. Soc. 57, 313 (1974).CrossRefGoogle Scholar
4.Müller, G., in Low Thermal Expansion Glass Ceramics (SpringerVerlag, Berlin, Heidelberg, New York, 1995), p. 13.CrossRefGoogle Scholar
5.Lichtenstein, A.I., Jones, R.O., Xu, H., and Heaney, P.J., Phys. Rev. B 58, 6219 (1998).CrossRefGoogle Scholar
6.Beall, G.H., in Silica, Reviews in Mineralogy Vol. 29, edited by Heaney, P.J., Prewitt, C.T., and Gibbs, G.V. (Mineralogical Society of America, Washington, DC, 1994), p. 468.Google Scholar
7.Alpen, U., Schulz, H., Talat, G.H., and Böhm, H., Solid State Commun. 23, 911 (1977).CrossRefGoogle Scholar
8.Nagel, W. and Böhm, H., Solid State Commun. 42, 625 (1982).CrossRefGoogle Scholar
9.Winkler, H.G.F, Acta Crystallogr. 1, 27 (1948).CrossRefGoogle Scholar
10.Schulz, H. and Tscherry, V., Acta Crystallogr. B28, 2174 (1972).Google Scholar
11.Tscherry, V., Schulz, H., and Laves, F., Z. Kristallogr. 135, 161 (1972).Google Scholar
12.Tscherry, V., Schulz, H., and Laves, F., Z. Kristallogr. 135, 175 (1972).Google Scholar
13.Pillars, W.W. and Peacor, D.R., Am. Mineral. 58, 681 (1973).Google Scholar
14.Guth, H. and Heger, G., in Fast Ion Transport in Solids, edited by Vashista, P., Mundy, J.N., and Shenoy, G.K. (Elsevier North Holland, New York, 1979), p. 499.Google Scholar
15.Tscherry, V. and Laves, F., Naturwissenschaften 57, 194 (1970).Google Scholar
16.Press, W., Renker, B., Schulz, H., and Böhm, H., Phys. Rev. B 21, 1250 (1980).CrossRefGoogle Scholar
17.Böhm, H., Am. Mineral. 68, 11 (1983).Google Scholar
18.Gillery, F.H. and Bush, E.A., J. Am. Ceram. Soc. 42, 175 (1959).CrossRefGoogle Scholar
19.Moya, J.S., Verduch, A.G., and Hortal, M., Trans. Br. Ceram. Soc. 73, 177 (1974).Google Scholar
20.Hortal, M., Villar, R., Vieira, S., and Moya, J.S., J. Am. Ceram. Soc. 58, 262 (1975).CrossRefGoogle Scholar
21.Cox, D.E., Toby, B.H., and Eddy, M.M., Aust. J. Phys. 41, 117 (1988).CrossRefGoogle Scholar
22.Rietveld, H.M., J. Appl. Crystallogr. 2, 65 (1969).CrossRefGoogle Scholar
23.Larson, A.C. and Von Dreele, R.B., GSAS—General Structure Analysis System (Los Alamos National Laboratory Report No. LAUR 86748, 1994).Google Scholar
24.Li, C.T., Z. Kristallogr. 127, 327 (1968).CrossRefGoogle Scholar
25.Thompson, P., Cox, D.E., and Hastings, J., J. Appl. Crystallogr. 20, 79 (1987).CrossRefGoogle Scholar
26.Von Dreele, R.B., in The Rietveld Method, edited by Young, R.A. (International Union of Crystallography, Oxford University Press, 1993), p. 227.CrossRefGoogle Scholar
27.Baerlocher, C., in The Rietveld Method, edited by Young, R.A. (International Union of Crystallography, Oxford University Press, 1993), p. 186.CrossRefGoogle Scholar
28.Hazen, R.M. and Finger, L.W., Comparative Crystal Chemistry (J. Wiley, New York, 1982).Google Scholar
29.Smith, G.S., Acta Crystallogr. 16, 542 (1963).CrossRefGoogle Scholar
30.Wright, A.F. and Lehmann, M.S., J. Solid State Chem. 36, 371 (1981).CrossRefGoogle Scholar
31.Loewenstein, W., Am. Mineral. 39, 92 (1954).Google Scholar
32.Goldsmith, J.R. and Laves, F., Z. Kristallogr. 106, 213 (1955).Google Scholar
33.Shannon, R.D. and Prewitt, C.T., Acta Crystallogr. B25, 925 (1969).CrossRefGoogle Scholar
34.Kroll, H. and Ribbe, P.H., in Feldspar Mineralogy, Reviews in Mineralogy, Vol. 2 (Mineralogical Society of America, Washington, DC, 1983), p. 57.CrossRefGoogle Scholar
35.Carpenter, M.A., McConnell, D.C., and Navrotsky, A., Geochim. Cosmochim. Acta 49, 947 (1985).CrossRefGoogle Scholar
36.Xu, H., Heaney, P.J., Navrotsky, A., Topor, L., and Liu, J., Am. Mineral. (1999, in press).Google Scholar
37.Hill, R.J. and Gibbs, G.V., Acta Crystallogr. B35, 25 (1979).CrossRefGoogle Scholar
38.Hazen, R.M. and Navrotsky, A., Am. Mineral. 81, 1021 (1996).CrossRefGoogle Scholar
39.Xu, H., Heaney, P.J., and Böhm, H., Phys. Chem. Miner. (1999, in press).Google Scholar
40.Dove, M., Am. Mineral. 82, 213 (1997).CrossRefGoogle Scholar
41.Grimm, H. and Dorner, B., J. Phys. Chem. Solids 36, 407 (1975).CrossRefGoogle Scholar
42.Carpenter, M.A., Salje, E.K.H, Graeme-Barber, A., Wruck, B., Dove, M.T., and Knight, K.S., Am. Mineral. 83, 2 (1998).CrossRefGoogle Scholar
43.Predecki, P., Haas, J., Faber, J. Jr, and Hitterman, R.L., J. Am. Ceram. Soc. 70, 175 (1987).CrossRefGoogle Scholar