Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T11:19:31.551Z Has data issue: false hasContentIssue false

Structural properties of InN films grown in different conditions by metalorganic vapor phase epitaxy

Published online by Cambridge University Press:  11 March 2011

Xiuhua Wang
Affiliation:
Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University, Xiamen 361005, People’s Republic of China
Shanshan Chen
Affiliation:
Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University, Xiamen 361005, People’s Republic of China
Wei Lin
Affiliation:
Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University, Xiamen 361005, People’s Republic of China
Shuping Li
Affiliation:
Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University, Xiamen 361005, People’s Republic of China
Hangyang Chen
Affiliation:
Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University, Xiamen 361005, People’s Republic of China
Dayi Liu
Affiliation:
Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University, Xiamen 361005, People’s Republic of China
Junyong Kang*
Affiliation:
Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University, Xiamen 361005, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: jykang@xmu.edu.cn
Get access

Abstract

InN thin films were grown on GaN underlayer with sapphire substrate by metalorganic vapor phase epitaxy under different growth conditions, including growth temperature, reactor pressure, and V/III ratio. X-ray diffraction and Raman scattering measurements reveal that the samples grown at different temperatures are mixed with different phases, especially at higher temperature. The calculated phonon dispersion curves of wurtzite, zinc-blende, and rocksalt structures show that the samples mainly contain wurtzite structure and small amount of zinc-blende phase, while the samples grown at 600 °C and 650 °C include a new structural phase other than the three well-known ones. This analysis demonstrates that the InN epilayer grown at 550 °C has the highest phase purity and better crystalline quality. Besides the key role of growth temperature, a relatively higher reactor pressure and lower V/III ratio are found to be more conducive to the improvement of crystalline quality, though they have a modest effect on the InN microstructure.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nanishi, Y., Saito, Y., and Yamaguchi, T.: RF-molecular-beam-epitaxy growth and properties of InN and related alloys. Jpn. J. Appl. Phys. 42, 2549 (2003).CrossRefGoogle Scholar
2.Yang, F.H., Hwang, J.S., Yang, Y.J., Chen, K.H., and Wang, J.H.: Growth of high-quality epitaxial InN film with high-speed reactant gas by organometallic vapor-phase epitaxy. Jpn. J. Appl. Phys. 41, L1321 (2002).CrossRefGoogle Scholar
3.Fu, S.P. and Chen, Y.F.: Effective mass of InN epilayers. Appl. Phys. Lett. 85, 1523 (2004).CrossRefGoogle Scholar
4.Bhuiyan, A.G., Hashimoto, A., and Yamamoto, A.: Indium nitride (InN): A review on growth, characterization, and properties. J. Appl. Phys. 94, 2779 (2003).CrossRefGoogle Scholar
5.Trainor, J.W. and Rose, K.: Some properties of InN films prepared by reactive evaporation. J. Electron. Mater. 3, 821 (1974).CrossRefGoogle Scholar
6.Hohenberg, P. and Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B. 136, 864 (1964).CrossRefGoogle Scholar
7.Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
8.Gonze, X., Rignanese, G.-M., Verstraete, M., Beuken, J.-M., Pouillon, Y., Caracas, R., Jollet, F., Torrent, M., Zerah, G., Mikami, M., Ghosez, Ph., Veithen, M., Raty, J.-Y., Olevano, V., Bruneval, F., Reining, L., Godby, R., Onida, G., Hamann, D.R., and Allan, D.C.: A brief introduction to the ABINIT soft ware package. Z. Kristallogr. 220, 558 (2005).CrossRefGoogle Scholar
9.Gonze, X., Beuken, J.M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.M., Sindic, L., Verstraete, M., Zerah, G., Jollet, F., Torrent, M., Roy, A., Mikami, M., Ghosez, Ph., Raty, J.Y., and Allan, D.C.: First-principles computation of material properties: The ABINIT software project. Comput. Mater. Sci. 25, 478 (2002).CrossRefGoogle Scholar
10.The ABINIT code is a common project of the Universit Catholiquede Louvain, Corning Incorporated, and other contributors (http://www.abinit.org).Google Scholar
11.Hartwigsen, C., Goedecker, S., and Hutter, J.: Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B. 58, 3641 (1998).CrossRefGoogle Scholar
12.Baroni, S., Giannozzi, P., and Testa, A.: Green’s-function approach to linear response in solids. Phys. Rev. Lett. 58, 1861 (1987).CrossRefGoogle ScholarPubMed
13.Giannozzi, P., de Gironcoli, S., Pavone, P., and Baroni, S.: Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B. 43, 7231 (1991).CrossRefGoogle ScholarPubMed
14.Saib, S., Bouarissa, N., Rodríguez-Hernández, P., and Muñoz, A.: First-principles study of high-pressure phonon dispersions of wurtzite, zinc-blende, and rocksalt AlN. J. Appl. Phys. 103, 013506 (2008).CrossRefGoogle Scholar
15.JCPDS-ICDD, PDF Database (No. 01-088-2362, No. 01-088-2365, No. 00-050-0792, No.00-052-0871, No. 01-089-7717).Google Scholar
16.Kim, K., Lambrecht, W.R.L., and Segall, B.: Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN. Phys. Rev. B. 53, 16310 (1996).CrossRefGoogle ScholarPubMed
17.Azuhata, T., Sota, T., Suzuki, K., and Nakamura, S.: Polarized Raman spectra in GaN. J. Phys. Condens. Matter 7, L129 (1995).CrossRefGoogle Scholar
18.Kladko, V.P., Kolomys, A.F., Slobodian, M.V., Strelchuk, V.V., Raycheva, V.G., Belyaev, A.E., Bukalov, S.S., Hardtdegen, H., Sydoruk, V.A., Klein, N., and Vitusevich, S.A.: Internal strains and crystal structure of the layers in AlGaN/GaN heterostructures grown on a sapphire substrate. J. Appl. Phys. 105, 1 (2009).CrossRefGoogle Scholar
19.Yu Davydov, V., Emtsev, V.V., Goncharuk, I.N., Smirnov, A.N., Petrikov, V.D., Mamutin, V.V., Vek-shin, V.A., Ivanov, S.V., Smirnov, M.B., and Inushima, T.: Experimental and theoretical studies of phonons in hexagonal InN. Appl. Phys. Lett. 75, 3297 (1999).CrossRefGoogle Scholar
20.Ranjan, V., Bin-Omran, S., Sichuga, D., Nichols, R.S., and Bellaiche, L.: Properties of GaN/ScN and InN/ScN superlattices from first principles. Phys. Rev. B. 72, 085315 (2005).CrossRefGoogle Scholar
21.Harima, H.: Properties of GaN and related compounds studied by means of Raman scattering. J. Phys. Condens. Matter 14, R967 (2002).CrossRefGoogle Scholar
22.Tütüncü, H.M., Srivastava, G.P., and Duman, S.: Lattice dynamics of the zinc-blende and wurtzite phases of nitrides. Physica B 316317, 190 (2002).CrossRefGoogle Scholar
23.Kwon, H., Lee, Y., Miki, O., Yamano, H., and Yoshida, A.: Raman spectra of indium nitride thin films grown by microwave-excited metalorganic vapor phase epitaxy on (0001) sapphire substrates. Appl. Phys. Lett. 69, 937 (1996).CrossRefGoogle Scholar
24.Briot, O., Gil, B., Maleyre, B., Ruffenach, S., Pinquier, C., Demangeot, F., and Frandon, J.: Strain-induced correlations between the phonon frequencies of indium nitride. Phys. Status Solidi C Conf. Crit. Rev. 1, 1420 (2004).CrossRefGoogle Scholar
25.Kaczmarczyk, G., Kaschner, A., Reich, S., Hoffmann, A., Thomsen, C., As, D.J., Lima, A.P., Schikora, D., Lischka, K., Averbeck, R., and Riechert, H.: Lattice dynamics of hexagonal and cubic InN: Raman-scattering experiments and calculations. Appl. Phys. Lett. 76, 2122 (2000).CrossRefGoogle Scholar
26.Qian, Z.G., Shen, W.Z., Ogawa, H., and Guo, Q.X.: Experimental studies of lattice dynamical properties in indium nitride. J. Phys. Condens. Matter 16, R381 (2004).CrossRefGoogle Scholar
27.Aderhold, J., Davydov, V.Yu., Fedler, F., Klausing, H., Mistele, D., Rotter, T., Semchinova, O., Stemmer, J., and Graul, J.: InN thin films grown by metalorganic molecular beam epitaxy on sapphire substrates. J. Cryst. Growth 222, 701 (2001).CrossRefGoogle Scholar
28.Inushima, T., Mamutin, V.V., Vekshin, V.A., Ivanov, S.V., Sakon, T., Motokawa, M., and Ohoya, S.: Physical properties of InN with the band gap energy of 1.1 eV. J. Cryst. Growth 227228, 481 (2001).CrossRefGoogle Scholar
29.Pinquier, C., Demangeot, F., Frandon, J., Chervin, J.-C., Polian, A., Couzinet, B., Munsch, P., Briot, O., Ruffenach, S., Gil, B., and Maleyre, B.: Raman scattering study of wurtzite and rocksalt InN under high pressure. Phys. Rev. B 73, 115211 (2006).CrossRefGoogle Scholar
30.Ueno, M., Yoshida, M., Onodera, A., Shimomura, O., and Takemura, K.: Stability of the wurtzite-type structure under high pressure: GaN and InN. Phys. Rev. B 49, 14 (1994).CrossRefGoogle ScholarPubMed
31.Wang, X.-S., Kushvaha, S.S., Yan, Z., and Xiao, W.: Self-assembly of antimony nanowires on graphite. Appl. Phys. Lett. 88, 233105 (2006).CrossRefGoogle Scholar
32.Mayr, S.G. and Samwer, K.: Model for intrinsic stress formation in amorphous thin films. Phys. Rev. Lett. 87, 036105 (2001).CrossRefGoogle ScholarPubMed
33.Pao, C.W. and Srolovitz, D.J.: Stress and morphology evolution during island growth. Phys. Rev. Lett. 96, 186103 (2006).CrossRefGoogle ScholarPubMed
34.Kadir, A., Ganguli, T., Gokhale, M.R., Shaha, A.P., Chandvankar, S.S., Aroraa, B.M., and Bhattacharya, A.: Growth and characterization of InN layers by metal-organic vapour phase epitaxy in a close-coupled showerhead reactor. J. Cryst. Growth 298, 403 (2007).CrossRefGoogle Scholar
35.Jones, R.D. and Rose, K.: Liquidus calculations for III-N semiconductors. Calphad 8, 343 (1984).CrossRefGoogle Scholar
36.Piner, E.L., Behbehani, M.K., and El-Masry, N.A.: Effect of hydrogen on the indium incorporation in InGaN epitaxial films. Appl. Phys. Lett. 70, 461 (1997).CrossRefGoogle Scholar
37.Koukitu, A., Takahashi, N., and Seki, H.: Thermodynamic study on metalorganic vapor-phase epitaxial growth of group III nitrides. Jpn. J. Appl. Phys. 36, L1136 (1997).CrossRefGoogle Scholar
38.Matsuoka, T.: Ternary alloys, in GaN and Related Materials, edited by Pearton, S.J. (Gordon and Breach, New York, 1997), pp. 5359.Google Scholar
39.Briot, O., Maleyre, B., Clur-Ruffenach, S., Gil, B., Pinquier, C., Demangeot, F., and Frandon, J.: The value of the direct bandgap of InN: A re-examination. Phys. Status Solidi C Conf. Crit. Rev. 1, 1425 (2004).CrossRefGoogle Scholar