Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T16:43:28.940Z Has data issue: false hasContentIssue false

The structural stabilities of the intermetallics and the solid-state phase transformations induced by lattice vibration effects in the Al–Zr system by first-principles calculations

Published online by Cambridge University Press:  31 January 2011

Shaoqing Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
Get access

Abstract

We investigated the structural stabilities of the intermetallics and the solid-state phase transformations induced by lattice vibration effects in the Al–Zr system by first-principles calculations. The calculated lattice parameters of all the phases and the phonon dispersion relations for pure Al and Zr are in good agreement with the experimental data. AlZr(oC8), Al4Zr5 (hP18), and Al3Zr5 (tI32) are predicted to be the high-temperature phases. To study the structural stabilities at high temperatures, the thermodynamic properties of the intermetallics are calculated via the linear response approach within the harmonic approximation. Thanks to the calculated enthalpies of formation at high temperatures, Al3Zr5 is predicted to be stabilized above 1163 K with respect to AlZr2 and Al2Zr3, in good agreement with the phase transformation temperature (1273 K) in the experimental phase diagram.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Okamoto, H.The Al–Zr (aluminum-zirconium) system. J. Phase Equilib. 14, 259 (1993)CrossRefGoogle Scholar
2.Amador, C., Hoyt, J.J., Chakoumakors, B.C., Fontaine, D.D.Theoretical and experimental study of relaxations in Al3Ti and Al3Zr ordered phases. Phys. Rev. Lett. 74, 4955 (1995)CrossRefGoogle ScholarPubMed
3.Colinet, C., Pasturel, A.Phase stability and electronic structure in ZrAl3 compound. J. Alloys Compd. 319, 154 (2001)CrossRefGoogle Scholar
4.Alatalo, M., Weinert, M., Watson, R.E.Satbility of Zr–Al alloys. Phys. Rev. B 57, R2009 (1998)CrossRefGoogle Scholar
5.Ghosh, G., Asta, M.First-principles calculation of structural energetics of Al–TM(TM = Ti,Zr,Hf) intermetallics. Acta Mater. 53, 3225 (2005)CrossRefGoogle Scholar
6.Wloverton, C.Entropically favored ordering: The metallurgy of Al2Cu revisited. Phys. Rev. Lett. 86, 5518 (2001)CrossRefGoogle Scholar
7.Arroyave, R., van de Walle, A., Liu, Z-K.First-principles calculations of the Zn–Zr system. Acta Mater. 54, 473 (2006)CrossRefGoogle Scholar
8.Chen, Y., Hammerschmidt, T., Pettifor, D.G., Shang, J-X., Zhang, Y.Influence of vibrational entropy on structural stability of Nb–Si and Mo–Si systems at elevated temperatures. Acta Mater. 57, 2657 (2009)CrossRefGoogle Scholar
9.Asta, M., Ozolinš, V.Structural, vibrational, and thermodynamic properties of Al–Sc alloys and intermetallic compounds. Phys. Rev. B 64, 094104 (2001)CrossRefGoogle Scholar
10.Ozolinš, V., Asta, M.Large vibration effects upon calculated phase boundaries in Al–Sc. Phys. Rev. Lett. 86, 448 (2001)CrossRefGoogle ScholarPubMed
11.Clouet, E., Sanchez, J.M.First-principles study of solubility of Zr in Al. Phys. Rev. B 65, 094105 (2002)CrossRefGoogle Scholar
12.Vinet, P., Rose, J., Ferrante, J., Smith, J.Universal features of the equation of state of solids. J. Phys. Condens. Matter 1, 1941 (1989)CrossRefGoogle Scholar
13.Straumanis, M.E.The precision determination of lattice constants by the powder and rotation crystal methods and applications. J. Appl. Phys. 20, 726 (1949)CrossRefGoogle Scholar
14.Goldak, J., Loyd, L.T., Barrett, C.S.Lattice parameters, thermal expansions and Grüneisen coefficients of zirconium, 4.2 to 1130°K. Phys. Rev. 144, 478 (1966)CrossRefGoogle Scholar
15.Kematic, R.J., Franzen, H.F.Thermodynamic study of the zirconium-aluminum system. J. Solid State Chem. 54, 226 (1984)CrossRefGoogle Scholar
16.Srinivasan, S., Desch, P.B., Schwarz, R.B.Metastable phases in the Al3X(X = Ti, Zr, and Hf) intermetallic system. Scr. Metall. Mater. 25, 2513 (1991)CrossRefGoogle Scholar
17.Wilson, C.G., Sams, D.The crystal structure of Zr2Al. Acta Crystallogr. 14, 71 (1961)CrossRefGoogle Scholar
18.Keeler, H.H., Mallery, J.J.Crystal structure and some properties of the compound, Zr3Al. J. Met. 2, 394 (1955)Google Scholar
19.Stedman, R., Nilson, G.Dispersion relations for phonons in aluminum at 80 and 300 K. Phys. Rev. 145, 492 (1966)CrossRefGoogle Scholar
20.Stassis, C., Zarestky, J., Arch, D., Harmon, O.M.B.H.Temperature dependence of the normal vibational modes of hcp Zr. Phys. Rev. B 18, 2632 (1978)CrossRefGoogle Scholar
21.Hao, Y-J., Zhang, L., Chen, X-R., Cai, L-C., Wu, Q., Alfè, D.Ab initio calculations of the thermodynamics and phase diagram of zirconium. Phys. Rev. B 78, 134101 (2008)CrossRefGoogle Scholar
22.Meschel, S.V., Kleppa, O.J.Standard enthalpies of formation of 4d aluminides by direct synthesis calorimetry. J. Alloys Compd. 191, 111 (1993)CrossRefGoogle Scholar
23.Murray, J., Peruzzi, A., Abriata, J.P.The Al–Zr (aluminum-zirconium) system. J. Phase Equilib. 13, 277 (1992)CrossRefGoogle Scholar
24.Saunders, N.Calculated stable and metastable phase equilibria in Al–Li–Zr alloys. Z. Metallkd. 80, 894 (1989)Google Scholar
25.Baroni, S., de Gironcoli, S., Corso, A.D., Giannozzi, P.Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001)CrossRefGoogle Scholar
26.Lee, C., Gonze, X.Ab initio calculation of the thermodynamic properties and atomic temperature factors of SiO2 α-quartz and stishovite. Phys. Rev. B 51, 8610 (1995)CrossRefGoogle ScholarPubMed
27.Walle, A.D., Ceder, G.The effect of lattice vibrations on substitutional alloy thermodynamics. Rev. Mod. Phys. 74, 11 (2002)CrossRefGoogle Scholar
28.Ozolinš, V., Wolverton, C., Zunger, A.Cu–Au, Ag–Au, Cu–Ag, and Ni–Au intermetallics: First-principles study of temperature-composition phase diagrams and structures. Phys. Rev. B 57, 6427 (1998)CrossRefGoogle Scholar
29.Ozolinš, V., Wolverton, C., Zunger, A.First-principles theory of vibrational effects on the phase stability of Cu–Au compounds and alloys. Phys. Rev. B 58, R5897 (1998)CrossRefGoogle Scholar