Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T21:10:09.548Z Has data issue: false hasContentIssue false

Structure and microwave dielectric properties of (Zn1−xNix)TiO3 ceramics

Published online by Cambridge University Press:  31 January 2011

Hyo Tae Kim*
Affiliation:
New Functional Materials Research Department, Korea Institute of Ceramic Engineering & Technology, 153-801 Seoul, Korea
Joon-Cheol Hwang
Affiliation:
New Functional Materials Research Department, Korea Institute of Ceramic Engineering & Technology, 153-801 Seoul, Korea
Joong-Hee Nam
Affiliation:
New Functional Materials Research Department, Korea Institute of Ceramic Engineering & Technology, 153-801 Seoul, Korea
Byung Hyun Choi
Affiliation:
New Functional Materials Research Department, Korea Institute of Ceramic Engineering & Technology, 153-801 Seoul, Korea
Michael T. Lanagan
Affiliation:
Center for Dielectric Studies, Materials Research Institute, University Park, The Pennsylvania State University, Pennsylvania 16802
*
a)Address all correspondence to this author. e-mail: hytek@kicet.re.kr
Get access

Abstract

Dielectric ceramics in the system (Zn1−xNix)TiO3, x = 0 to 1 were synthesized by the solid-state reaction route. The phase distribution, microstructure, and dielectric properties were characterized using powder x-ray diffraction analysis, electron microscopy, and microwave measurement techniques. Three phase composition regions were identified in the specimens sintered at 1150 °C: [spinel + rutile] at 0 ≤ x ≤ 0.5, [spinel + ilmenite + rutile] at 0.5 < x ≤ 0.8, and [ilmenite] phase at 0.8 < x ≤ 1. For the 0 ≤ x ≤ 0.5 region, the amount of Ti-rich precipitates incorporated into the spinel phase decreased with the Ni content at 0 ≤ x ≤ 0.5, with a concomitant increase of the rutile phase. The microwave dielectric properties depended on the phase composition and volume according to the three typical phase regions, where the relative amount of rutile to the spinel or ilmenite determined the dielectric properties. The dielectric constant as a function of Ni addition was modeled with a Maxwell mixing rule. An optimum phase distribution was determined in this system with dielectric constant of 22, a Q × f of 60,000, and a low temperature coefficient of the resonant frequency.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.McCord, A.T. and Saunders, H.F., U.S. Patent No. 2 739 019; also in Ceram. Abstr. 24, 155 (1945).Google Scholar
2.Gupta, R.P., Gangwal, S.K., and Jain, S.C., U.S. Patent No. 5 714 431 (1998).Google Scholar
3.Levy, M.L., Compt. rend. 105, 378 (1887).Google Scholar
4.Levy, M.L., Compt. rend. 107, 421 (1888).Google Scholar
5.Cole, S.S. and Nelson, W.K., J. Phys. Chem. 42, 245 (1938).CrossRefGoogle Scholar
6.Dulin, F.H. and Rase, D.E., J. Am. Ceram. Soc. 43, 130 (1960).Google Scholar
7.Bartram, S.F. and Slepetys, R.A., J. Am. Ceram. Soc. 44, 493 (1961).CrossRefGoogle Scholar
8.Yamaguchi, O., Morimi, M., Kawabata, H., and Shimizu, K., 70, C97 (1987).Google Scholar
9.Steinike, U. and Wallis, B., Cryst. Res. Technol. 32, 187 (1997).CrossRefGoogle Scholar
10.JCPDS Powder Diffraction File Card No. 26–1500 (ZnTiO3) (1976), No. 13–471 (Zn2Ti3O8) (1961), No. 25–1164 (Zn2TiO4) (1975), No. 21–1276 (TiO2; rutile) (1969), and No. 21–1272 (TiO2; anatase), (International Centre for Diffraction Data, Newtown Square, PA, 1969).Google Scholar
11.Sugiura, M. and Ikeda, K., J. Jpn. Ceram. Assoc. 55, 62 (1947); Also in Ceram. Abstr. 29, 164e (1950).Google Scholar
12.Kim, H.T., Kim, S.H., Nahm, S., Byun, J.D., and Kim, Y.H., J. Am. Ceram. Soc. 82, 3043 (1999).CrossRefGoogle Scholar
13.Kim, H.T., Kim, Y.H., Valant, M., and Suvorov, D., J. Am. Ceram. Soc. 84, 1081 (2001).CrossRefGoogle Scholar
14.Kim, H.T., Byun, J.D., and Kim, Y., Mater. Res. Bull. 33, 963 (1998).CrossRefGoogle Scholar
15.Kim, H.T., Byun, J.D., and Kim, Y., Mater. Res. Bull. 33, 975 (1998).CrossRefGoogle Scholar
16.Kim, H.T. and Kim, Y.H., in Dielectric Ceramic Materials, edited by Nair, K.M., Bhalla, A.S. (Ceram. Trans. 100, American Ceramic Society, Westerville, OH, 1999), pp. 227238.Google Scholar
17.Kim, H.T., Nahm, S., Byun, J.D., and Kim, Y.H., J. Am. Ceram. Soc. 82, 3476 (1999).CrossRefGoogle Scholar
18.Hakki, B.W. and Coleman, P.D., IEEE Trans. Microwave Theory Tech. MTT–8, 402 (1960).CrossRefGoogle Scholar
19.Tarou, M., Electron. Ceram. 24, 38 (1993).Google Scholar
20.Shannon, R.D., Acta Crystallogr. A32, 751 (1976).CrossRefGoogle Scholar
21.Kim, H.T. and Lanagan, M.T. (2002, unpublished).Google Scholar
22.Shannon, R.D., J. Appl. Phys. 73, 348 (1993).CrossRefGoogle Scholar
23.Ceramic Materials for Electronics-Processing, Properties, and Applications, edited by Buchanan, R.C. (Marcel Dekker, 1986), pp. 8486.Google Scholar
24.Sohn, J.H., Inaguma, Y., Yoon, S.O., Itoh, M., Nakamura, T., Yoon, S.J., Kim, H.J., Jpn. J. Appl. Phys. 33, 5466 (1994).CrossRefGoogle Scholar
25.Templeton, A., Wang, X., Penn, S.J., Webb, S.J., Cohen, L.F., and Alfod, N. McN., J. Am. Ceram. Soc. 83, 95100 (2000).CrossRefGoogle Scholar