Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T01:20:22.615Z Has data issue: false hasContentIssue false

A study of the thermodynamics of the crystalline-to-amorphous transformation in Zr-based hydrides by means of thermal analysis

Published online by Cambridge University Press:  31 January 2011

X. L. Yeh
Affiliation:
W. M. Keck Laboratory, California Institute of Technology, Pasadena, California 91125
E. J. Cotts
Affiliation:
W. M. Keck Laboratory, California Institute of Technology, Pasadena, California 91125
Get access

Abstract

Amorphous Zr–Rh and Zr–Pd hydrides are prepared both by hydriding metallic glasses and by hydriding metastable, polycrystalline fcc alloys. The thermal stabilities of the amorphous hydrides produced by these two distinct methods are examined by means of differential scanning calorimetry and are found to be similar. The enthalpy difference between the fcc phase and the amorphous phase of Zr81Rh19 is determined to be 0.6 kcal/mol. The thermal stability of Zr–Rh hydrides as a function of hydrogen concentration is investigated.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yeh, X. L., Samwer, K., and Johnson, W. L., Appl. Phys. Lett. 42, 242 (1983).Google Scholar
2Schwarz, R. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
3Atzmon, M., Verhoeven, J D., Gibson, E. D., and Johnson, W. L., Appl. Phys. Lett. 45, 1052 (1984).CrossRefGoogle Scholar
4Yeh, X. L., Johnson, W. L., Tang, J. Y., and Shi, C. R., in the Proceedings of the Materials Research Society Symposium on Rapidly Solidified Alloys and Their Mechanical and Magnetic Properties, edited by Geissen, B. C., Polk, D. E., and Taub, A. I. (Materials Research Society, Pittsburgh, 1985), Vol. 58, p. 63.Google Scholar
5Schroder, H., Samwer, K., and Koster, U., Phys. Rev. Lett. 54, 197 (1985).CrossRefGoogle Scholar
6Rossum, M. Van, Nicolet, M. A., and Johnson, W. L., Phys. Rev. B 29, 5498 (1984).Google Scholar
7Unruh, K., Meng, W. J., Johnson, W. L., Thakoor, A. P., and Khanna, S. K., Mater. Res. Soc. Symp. Proc. 37, 551 (1985).Google Scholar
8Chen, H. S. and Miller, C. E., Mater. Res. Bull. 11, 29 (1976).CrossRefGoogle Scholar
9Cotts, E. J., Meng, W. J., and Johnson, W. L., Phys. Rev. Lett. 57, 2295 (1986).CrossRefGoogle Scholar
10Wagner, J. E., Bowman, R. C. Jr., and Cantrell, J. S., J. Appl. Phys. 58, 4573 (1985).CrossRefGoogle Scholar
11Schlapbach, L., Seiler, A., Stucki, F., and Siegmann, H. C., J. Less-Comm. Met. 73, 145 (1980).CrossRefGoogle Scholar
12Williams, A., Eckert, J., Yeh, X. L., Atzmon, M., and Samwer, K., J. Non-Cryst. Solids 61/62, 643 (1984).Google Scholar
13Samwer, K. and Johnson, W. L., Phys. Rev. B 17, 2907 (1983).Google Scholar
14Buschow, K. H. J., Bouten, P. C. P., and Miedema, A. R., Rep. Prog. Phys. 45 (9), 937 (1982).CrossRefGoogle Scholar