Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T03:31:23.112Z Has data issue: false hasContentIssue false

Study of wave attenuation in concrete

Published online by Cambridge University Press:  03 March 2011

J-M. Berthelot
Affiliation:
Laboratoire de Mécanique Productique et Matériaux, Université du Maine, BP 535, 72017 Le Mans Cédex, France
Souda M. Ben
Affiliation:
Laboratoire Central des Ponts et Chaussées, Centre de Nantes, Section Essais Non Destrucifs, BP 19, 44340 Bouguenais, France
J.L. Robert
Affiliation:
Laboratoire Central des Ponts et Chaussées, Centre de Nantes, Section Essais Non Destrucifs, BP 19, 44340 Bouguenais, France
Get access

Abstract

The experimental study of wave attenuation in concrete has been achieved in the case of the propagation of plane waves in concrete rods. Different mortars and concretes have been investigated. A transmitter transducer coupled to one of the ends of the concrete rod generates the propagation of a plane wave in the rod. The receiver transducer, similar to the previous one, is coupled to the other end of the rod. The experimental results lead to an analytical expression for wave attenuation as function of the concrete composition, the propagation distance, and the wave frequency.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Elghali, Benkirane M., “Propagation d'une fissure dans le béton précontract. Interaction avec des armatures passives”, Ph.D. Thesis, Compiégne (1982).Google Scholar
2Rossi, P., “Fissuration du béton: du matériau á la structure. Application de la mécanique linéaire de la rupture”, Report n° 150, Laboratoire Central des Ponts et Chaussées (1988).Google Scholar
3Berthelot, J-M. and Robert, J-L., “Damage process characterization in concrete by acoustic émission”, 2nd Int. Conf. on Acoustic Emission, Lake Tahoe, NV (1985).Google Scholar
4Berthelot, J-M. and Robert, J-L., “Application de l'émission acoustique aux mecanismes d'endommagement du béton”, Bulletin de liaison des Laboratoires des Ponts et Chaussees, n° 140, 101111 (1985).Google Scholar
5Rossi, P., Robert, J-L., Bruhat, D., and Gervais, J-P., “Acoustic emission applied to study crack propagation in concrete”, International Conference on Fracture and Damage of Concrete and Rock, Vienna (1988).Google Scholar
6Ben Souda, M., “Contribution á l'analyse par émission acoustique de l'endommagement dans le béton”, Ph.D. Thesis, Le Mans (1989).Google Scholar
7Berthelot, J-M. and Robert, J-L., J. Eng. Mech. 16, (3), 587604 (1990).CrossRefGoogle Scholar
8Berthelot, J-M., Ben Souda, M., and Robert, J-L., “Damage evaluation of concrete test specimens by acoustic emission”, 13th World Conference on Non Destructive Testing, Sao Paulo, October 18–23 (1992).CrossRefGoogle Scholar
9Berthelot, J-M., Ben Souda, M., and Robert, J-L., “Frequency response of transducers used in acoustic emission in concrete”, NDT & International (in press).Google Scholar
10Pekeris, C. L. and Lifson, H., J. Acous. Soc. Am. 29 (11), 12331238 (1957).CrossRefGoogle Scholar
11Breckenridge, F. R., Tschiegg, C. E., and Greenspan, M., J. Acous. Soc. Am. 57 (3), 626631 (1975).CrossRefGoogle Scholar
12Blair, D. P., Geophysics 50 (11), 16761683 (1985).CrossRefGoogle Scholar
13Skalak, R., ASME Applied Mechanics Division, paper no. 56-A37, pp. 5964 (1955).Google Scholar
14Achenbach, J. D., “Wave propagation in elastic solids”, North-Holland ed. (1973).Google Scholar
15Ying, C. F. and Truell, R., J. Appl. Phys. 27 (9) (1956).CrossRefGoogle Scholar
16Kinra, V. K. and Anand, A., Int. J. Solids Structures 18 (9), 367380 (1982).CrossRefGoogle Scholar
17Beltzer, A. I., Bert, C. W., and Stritz, A. G., Int. J. Solids Structures 19 (9) 785791 (1983).CrossRefGoogle Scholar