Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T00:21:22.329Z Has data issue: false hasContentIssue false

Submicrometer zinc oxide particles: Elaboration in polyol medium and morphological characteristics

Published online by Cambridge University Press:  03 March 2011

Didier Jézéquel
Affiliation:
Laboratoire de Chimie des Matériaux Divisés et Catalyse, Université Paris 7-Denis Diderot, 2 Place Jussieu, 75251 Paris Cedex 05, France
Jean Guenot
Affiliation:
Laboratoire de Chimie des Matériaux Divisés et Catalyse, Université Paris 7-Denis Diderot, 2 Place Jussieu, 75251 Paris Cedex 05, France
Noureddine Jouini
Affiliation:
Laboratoire de Chimie des Matériaux Divisés et Catalyse, Université Paris 7-Denis Diderot, 2 Place Jussieu, 75251 Paris Cedex 05, France
Fernand Fiévet
Affiliation:
Laboratoire de Chimie des Matériaux Divisés et Catalyse, Université Paris 7-Denis Diderot, 2 Place Jussieu, 75251 Paris Cedex 05, France
Get access

Abstract

A novel and easy route for preparing submicrometer particles of zinc oxide, involving hydrolysis of zinc salt in a polyol medium, is proposed. Zinc acetate dihydrate and diethyleneglycol appear to be the best candidates for obtaining a high yield of particles with well-defined morphological characteristics. Monodisperse spherical particles in the submicrometer range (0.2−0.4 μm) have been obtained for a salt concentration less than 0.1 mol 1−1. The particle size depends mainly on the heating rate. The particles are microporous (surface area: 80 m2 g−1) and are formed by aggregation of small crystallites (10 nm). Calcination at moderate temperature drastically reduces this porosity without significant interparticle sintering. At higher concentration, no aggregation occurs and tiny single crystallite particles are obtained.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Liu, T. Q., Sakurai, O., Mizutani, N., and Kato, M., J. Mater. Sci. 21, 3698 (1986).CrossRefGoogle Scholar
2Haile, S. M., Johnson, D. W. Jr., Wiseman, G. H., and Bowen, H. K., J. Am. Ceram. Soc. 72, 2004 (1989).CrossRefGoogle Scholar
3Andrés Vergés, M. and Martinez-Gallego, M., J. Mater. Sci. 27, 3756 (1992).CrossRefGoogle Scholar
4Sproson, D. W., Messing, G. L., and Gardner, T. J., Ceram. Int. 12, 3 (1986).CrossRefGoogle Scholar
5Heistand, R. H. II and Chia, Y. H., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 93.Google Scholar
6Andrés Vergés, M., Mifsud, A., and Serna, C. J., J. Chem. Soc. Faraday Trans. 86, 959 (1990).CrossRefGoogle Scholar
7Sapieszko, R. S. and Matijević, E., Corrosion 36, 522 (1980).CrossRefGoogle Scholar
8Castellano, M. and Matijević, E., Chem. Mater. 1, 78 (1989).CrossRefGoogle Scholar
9Kamata, K., Hosono, H., Maeda, Y., and Miyokawa, K., Chem. Lett., 2021 (1984).CrossRefGoogle Scholar
10Fieévet, F., Lagier, J. P., and Figlarz, M., MRS Bull. XIV, 29 (1989).CrossRefGoogle Scholar
11Fiévet, F., Lagier, J. P., Blin, B., Beaudoin, B., and Figlarz, M., Solid State Ionics 32/33, 198 (1989).CrossRefGoogle Scholar
12Figlarz, M., Ducamp-Sanguesa, C., Fiévet, F., and Lagier, J.P., in Advances in Powder Metallurgy and Paniculate Materials, edited by Metal Powder Industries Federation, Princeton, NJ (P.M. World Congress Proceedings, San Francisco, CA, 1992), Vol. 1, pp. 179192.Google Scholar
13Kominami, H., Inoue, M., and Inui, T., Catal. Today 16, 309 (1993).CrossRefGoogle Scholar
14Matijević, E. and Cimas, S., Colloid Polym. Sci. 265, 155 (1987).CrossRefGoogle Scholar
15Li, X., Xu, B. K., Wang, Z. C., Chi, F., and Zhao, M. Y., J. Mater. Sci. Lett. 11, 1476 (1992).Google Scholar
16Collins, I. R. and Taylor, S. E., J. Mater. Chem. 2, 1277 (1992).CrossRefGoogle Scholar
17Warren, E., X-Ray Diffraction (Addison-Wesley, Reading, MA, 1969), p. 264.Google Scholar
18Matijević, E., Prog. Colloid Polym. Sci. 61, 24 (1976).CrossRefGoogle Scholar
19Matijević, E., Annu. Rev. Mater. Sci. 15, 483 (1985).CrossRefGoogle Scholar
20Matijević, E., Langmuir 2, 12 (1986).CrossRefGoogle Scholar
21Matijević, E., Chem. Mater. 5, 412 (1993).CrossRefGoogle Scholar
22Livage, J., Sanchez, C., Henry, M., and Doeuff, S., Solid State Ionics 32/33, 633 (1989).CrossRefGoogle Scholar
23Matijević, E., J. Colloid Interface Sci. 58, 374 (1977).CrossRefGoogle Scholar
24Matijević, E., Pure Appl. Chem. 50, 1193 (1978).CrossRefGoogle Scholar
25Sugimoto, T., Adv. Colloid Interface Sci. 28, 65 (1987).CrossRefGoogle Scholar
26Bowen, H. K., Meter. Sci. Eng. 44, 1 (1980).CrossRefGoogle Scholar
27Ocaña, M. and Matijević, E., J. Mater. Res. 5, 1083 (1990).CrossRefGoogle Scholar
28Hsu, W. P., Rönnquist, L., and Matijević, E., Langmuir 4, 31 (1988).CrossRefGoogle Scholar
29Pluym, T. C., Lyons, S. W., Powell, Q. H., Gurav, A. S., Kodas, T. T., Wang, L. M., and Glicksman, H. D., Mater. Res. Bull. XXVIII, 369 (1993).CrossRefGoogle Scholar
30Edelson, L. H. and Glaeser, A. M., J. Am. Ceram. Soc. 71, 225 (1988).CrossRefGoogle Scholar
31Brinker, C. J. and Scherer, G. W., Sol-gel Science (Academic Press, New York, 1990), pp. 275284.Google Scholar
32Livage, J., J. Solid State Chem. 64, 322 (1986).CrossRefGoogle Scholar