Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T16:08:23.041Z Has data issue: false hasContentIssue false

Subsolidus phase equilibria in the RuO2–Bi2O3–CeO2 system

Published online by Cambridge University Press:  31 January 2011

Marko Hrovat
Affiliation:
Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
Andreja Benčan
Affiliation:
Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
Janez Holc
Affiliation:
Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
Tadej Rojac
Affiliation:
Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
Marija Kosec
Affiliation:
Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
Get access

Abstract

Subsolidus equilibria in air in the RuO2–Bi2O3–CeO2 systems were studied with the aim of obtaining information on possible interactions between a Bi2Ru2O7-based cathode and a CeO2-based solid electrolyte in solid-oxide fuel cells. Bi2O3 is soluble in CeO2, and forms a cubic fluorite solid solution Bi1-xCexO2-x/2 up to Bi1/3Ce2/3O1.83, while no solid solubility of the CeO2 in Bi2O3 was detected. No ternary compound was found in the system. The tie line is between Bi2Ru2O7 and the CeO2 solid solution.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Minh, N.Q., J. Am. Ceram. Soc. 76, 563 (1993).CrossRefGoogle Scholar
2.Badwal, S.P.S. and Foger, K., Ceramics Int. 22, 257 (1996).CrossRefGoogle Scholar
3.Steele, B.C.H., J. Mater. Sci. 36, 1053 (2001).CrossRefGoogle Scholar
4.Tuller, H.L. and Nowick, A.S., J. Electrochem. Soc. 122, 255 (1975).CrossRefGoogle Scholar
5.Steele, B.C.H., Zheng, K., Rudkin, R.A., Kiratzis, N., Cristie, M., in Proc. 4th Int. Symp. on Solid Oxide Fuel Cells SOFC-IV, edited by Dokiya, M., Yamamoto, O., Tagawa, T., and Singhal, S.C. (The Electrochemical Society, Yokohama, Japan, 1995), pp. 10281030.Google Scholar
6.Godickemeier, M., Sasaki, K., Gauckler, L.J., and Riess, I., J. Electrochem. Soc. 144, (1997), pp. 1653–1646.CrossRefGoogle Scholar
7.Kharton, V.V., Figueiredo, F.M., Navarro, L., Naumovich, E.N., Kovalevsky, A.V., Yaremchenko, A.A., Viskup, A.P., Carneiro, A., Marques, F.M.B., Frade, J.R., J. Mater. Sci. 36, 1105 (2001).CrossRefGoogle Scholar
8.Hammouche, A., Siebert, E., and Hammou, A., Mater. Res. Bull. 24, 367 (1989).CrossRefGoogle Scholar
9.Kuo, J.H., Anderson, H.U., and Sparlin, D.M., J. Solid State Chem. 87, 55 (1990).CrossRefGoogle Scholar
10.Kleitz, M., Iharada, T., Abraham, F., Mairesse, G., and Fouletier, J., Sens. Actuators B 13–14, 27 (1993).CrossRefGoogle Scholar
11.Hrovat, M., Holc, J., and Kolar, D., Solid State Ionics 68, 99 (1994).CrossRefGoogle Scholar
12.Hrovat, M., Bernik, S., and Holc, J., J. Mater. Sci. Lett. 18, 1019 (1999).CrossRefGoogle Scholar
13.Takeda, T., Kanno, R., Kawamoto, Y., Takeda, Y., and Yamamoto, O., J. Electrochemical Soc. 147, 1730 (2000).CrossRefGoogle Scholar
14.Bae, J.M. and Steele, B.C.H., J. Electroceramics 3, 37 (1999).CrossRefGoogle Scholar
15.Bencan, A., Hrovat, M., Holc, J., and Kosec, M., Mater. Res. Bull. 35, 2415 (2000).CrossRefGoogle Scholar
16.Hrovat, M., Bencan, A., Holc, J., and Kosec, M., Mater. Res. Bull. 36, 767 (2001).CrossRefGoogle Scholar
17.Benz, R., Acta Crystallogr. B 27, 853 (1971).CrossRefGoogle Scholar
18.Hrovat, M., Bernik, S., and Kolar, D., J. Mater. Sci. Lett. 7, 637 (1988).CrossRefGoogle Scholar
19.Dixon, S., Marr, J., Lachowski, E.E., Gard, J.A., and Glasser, F.P., Mater. Res. Bull. 15, 1811 (1980).CrossRefGoogle Scholar
20.Hrovat, M., Holc, J., Bernik, S., and Makovec, D., Mater. Res. Bull. 33, 1175 (1998).CrossRefGoogle Scholar