Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T01:06:26.609Z Has data issue: false hasContentIssue false

The surface composition of silicon carbide powders and whiskers: An XPS study

Published online by Cambridge University Press:  31 January 2011

T. N. Taylor
Affiliation:
Chemical and Laser Sciences Division, Los Alamos National laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

The surface composition and bonding of a wide variety of silicon carbide powders and whiskers have been characterized by x-ray photoelectron spectroscopy (XPS). Ultrafine SiC powders, grown by a radio frequency plasma process, have been shown to exhibit graphitic carbon and a thin suboxide coating. Whiskers of SiC, grown in a vapor-liquid-solid or proprietary commercial process, were generally covered by heavier oxides than the powders and to a variable degree showed silica-like bonding. Most of the materials were subject to sample charging. Procedures were developed to estimate these charging effects and interpret the complete catalog of XPS spectra from these materials with respect to Fermi-level assignments. Charge independent quantities, such as oxygen Auger parameter and O(1s)–Si(2p) peak position difference, were found to agree with accepted values in the literature while exhibiting trends consistent with suboxide and silica bonding assignments. The data give a broad basis for understanding the feedstock surface chemistry which is involved during fabrication of monolithic or composite silicon carbide materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sanders, H. J., Chem. & Eng. News 62, 26 (1984).CrossRefGoogle Scholar
2Vogt, G.J., Phillips, D.S., and Taylor, T. N., Adv. Ceram. 21, 203 (1987).Google Scholar
3Greskovich, C. and Rosolowski, J.H., J. Am. Ceram. Soc. 59, 336 (1976).CrossRefGoogle Scholar
4Homeny, J. and Vaughn, W. L., MRS Bull. 12, 66 (1987).CrossRefGoogle Scholar
5Bozso, F., Muehlhoff, L., Trenary, M., Choyke, W. J., and Yates, J. T. Jr, J. Vac. Sci. Technol. A2, 1271 (1984).CrossRefGoogle Scholar
6Bermudez, V. M., Appl. Surf. Sci. 17, 12 (1983).CrossRefGoogle Scholar
7Bermudez, V. M., Parrill, T. M., and Kaplan, R., Surf, Sci. 173, 234 (1986).CrossRefGoogle Scholar
8Parrill, T. M. and Bermudez, V. M., Solid State Commun. 63, 231 (1987).CrossRefGoogle Scholar
9Kaplan, R., J. Appl. Phys. 56, 1636 (1984).CrossRefGoogle Scholar
10Miyoshi, K. and Buckley, D. H., Appl. Surf. Sci. 10, 357 (1982).Google Scholar
11Muehlhoff, L., Choyke, W. J., Bozack, M.J., and Yates, J.T. Jr, J. Appl. Phys. 60, 2842 (1986).CrossRefGoogle Scholar
12Adachi, S., Mohri, M., and Yamashina, T., Surf. Sci. 161, 479 (1985).CrossRefGoogle Scholar
13Bommel, A. J. Van, Crombeen, J. E., and Tooren, A. Van, Surf. Sci. 48, 463 (1975).CrossRefGoogle Scholar
14Dayan, M., J. Vac. Sci. Technol. A3, 361 (1985).CrossRefGoogle Scholar
15Jorgensen, B. and Morgen, P., J. Vac. Sci. Technol. A4, 1701 (1986).CrossRefGoogle Scholar
16Muehlhoff, L., Bozack, M.J., Choyke, W. J., and Yates, J.T. Jr, J. Appl. Phys. 60, 2558 (1986).CrossRefGoogle Scholar
17Antill, J. E. and Warburton, J. B., Corrosion Sci. 11, 337 (1971).CrossRefGoogle Scholar
18Clarke, R.A., Tapping, R. L., Hopper, M. A., and Young, L., J. Electrochem. Soc. 122, 1347 (1975).CrossRefGoogle Scholar
19Raider, S. I. and Flitsch, R., IBM J. Res. Develop. 22, 294 (1978).CrossRefGoogle Scholar
20Grunthaner, F. J., Grunthaner, P. J., Vasquez, R. P., Lewis, B.F., and Maserjian, J., J. Vac. Sci. Technol. 16, 1443 (1979).CrossRefGoogle Scholar
21Ishizaka, A., Iwata, S., and Kamigaki, Y., Surf. Sci. 84, 355 (1979).CrossRefGoogle Scholar
22Hattori, T. and Suzuki, T., Appl. Phys. Lett. 43, 470 (1983).CrossRefGoogle Scholar
23Hollinger, G. and Himpsel, F. J., Appl. Phys. Lett. 44, 93 (1984).CrossRefGoogle Scholar
24Braun, W. and Kuhlenbeck, H., Surf. Sci. 180, 279 (1987).CrossRefGoogle Scholar
25Grunthaner, P. J., Hecht, M. H., Grunthaner, F. J., and Johnson, N.M., J. Appl. Phys. 61, 629 (1987).CrossRefGoogle Scholar
26Barr, T. L., Appl. Surf. Sci. 15, 1 (1983).CrossRefGoogle Scholar
27Raider, S. I. and Flitsch, R., J. Electrochem. Soc. 123, 1754 (1976).CrossRefGoogle Scholar
28Finster, J., Schulze, D., and Meisel, A., Surf. Sci. 162, 671 (1985).CrossRefGoogle Scholar
29O'Leary, M. J. and Thomas, J. H., J. Vac. Sci. Technol. A5, 106 (1987).CrossRefGoogle Scholar
30Garner, C. M., Lindau, I., Su, C. Y., Pianetta, P., and Spicer, W. E., Phys. Rev. B 19, 3944 (1979).CrossRefGoogle Scholar
31Hollinger, G. and Himpsel, F. J., J. Vac. Sci. Technol. A1, 640 (1983).CrossRefGoogle Scholar
32Larsson, C.U.S., Flodstrom, A.S., Nyholm, R., Incoccia, L., and Senf, F., J. Vac. Sci. Technol. A5, 3321 (1987).CrossRefGoogle Scholar
33Wagner, C.D., Riggs, W. M., Davis, L. E., Moulder, J. F., and Muilenberg, G. E., Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Division, Perkin-Elmer Corp., Eden Prairie, MN, 1979.Google Scholar
34Anthony, M.T. and Seah, M.P., Surf. Interface Anal. 6, 138 (1984).Google Scholar
35Riviere, J. C., in Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, edited by Briggs, D. and Seah, M.P. (John Wiley & Sons, New York, 1983), p. 50.Google Scholar
36Seah, M. P. and Dench, W. A., Surf. Interface Anal. 1, 2 (1979).CrossRefGoogle Scholar
37Campbell, C.T. and Paffett, M.T., Surf. Sci. 139, 396 (1984).Google Scholar
38Milewski, J. V., Gac, F. D., Petrovic, J. J., and Skaggs, S. R., J. Materials Sci. 20, 1160 (1985).Google Scholar
39Stephenson, D.A. and Binkowski, N.J., J. Non-Crystalline Solids 22, 399 (1976).CrossRefGoogle Scholar
40Wagner, C.D., J. Electron Spectrosc. Related Phenomena 18, 345 (1980).CrossRefGoogle Scholar
41Lewis, R. T. and Kelly, M.A., J. Electron Spectrosc. Related Phenomena 20, 105 (1980).CrossRefGoogle Scholar
42Swift, P., Shuttleworth, D., and Seah, M. P., in Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, edited by Briggs, D. and Seah, M.P. (John Wiley & Sons, New York, 1983), Appendix 2.Google Scholar
43Swift, P., Surf. Interface Anal. 4, 47 (1982).CrossRefGoogle Scholar
44Wagner, C. D., Passoja, D. E., Hillery, H.F., Kinisky, T. G., Six, H.A., Jansen, W.T., and Taylor, J. A., J. Vac. Sci. Technol. 21, 933 (1982).CrossRefGoogle Scholar
45Feldman, L. C. and Mayer, J.W., Fundamentals of Surface and Thin Film Analysis (Elsevier Science Publishing Co., New York, 1986).Google Scholar
46Smith, K. L. and Black, K. M., J. Vac. Sci. Technol. A2, 744 (1984).CrossRefGoogle Scholar
47Miller, M.L. and Linton, R.W., Anal. Chem. 57, 2314 (1985).CrossRefGoogle Scholar
48Wagner, C.D., Zatko, D.A., and Raymond, R.H., Anal. Chem. 52, 1445 (1980).CrossRefGoogle Scholar
49Briggs, D. and Riviere, J. C., in Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, edited by Briggs, D. and Seah, M. P. (John Wiley & Sons, New York, 1983), p. 125.Google Scholar
50Evans, S. and Thomas, J. M., Proc. R. Soc. Lond. A 353, 103 (1977).Google Scholar
51Rogers, J.W. Jr, Houston, J.E., Rye, R. R., Hutson, F. H., and Ramaker, D. E., J. Vac. Sci. Technol. A 4, 1601 (1986).CrossRefGoogle Scholar
52Schlogl, R. and Boehm, H. P., Carbon 21, 345 (1983).CrossRefGoogle Scholar
53Wandelt, K., Surf. Sci. Reports 2, 1 (1982); H. Hopster and C. R. Brundle, J. Vac. Sci. Technol. 16, 548 (1979).CrossRefGoogle Scholar
54Hecht, M. H., Grunthaner, P. J., and Grunthaner, F. J., Electrochem. Soc. Extended Abstracts 86, 384 (1986).Google Scholar
55Kee, R. W., Geib, K. M., Wilmsen, C. W., and Ferry, D. K., J. Vac. Sci. Technol. 15, 1520 (1978).CrossRefGoogle Scholar
56Rahaman, M. N. and Jonghe, L. C. De, Am. Ceram. Soc. Bull. 66, 782 (1987).Google Scholar