Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T19:16:18.441Z Has data issue: false hasContentIssue false

Surface-oxidation studies of cube-textured, pure nickel to form NiO as a potential YBa2Cu3O7−x-coated conductor buffer layer

Published online by Cambridge University Press:  31 January 2011

Z. Lockman
Affiliation:
Department of Materials, Imperial College, Prince Consort Road, London, SW7 2BP, United Kingdom
A. Berenov
Affiliation:
Department of Materials, Imperial College, Prince Consort Road, London, SW7 2BP, United Kingdom
W. Goldacker
Affiliation:
Forschungszentrum Karlsruhe, Techniqk und Umwelt, Institut for Festkorperforschung, Hermann-von-Helmholtz-Platz-1, D-7634 Eggenstein-Leopoldshafen, Germany
R. Nast
Affiliation:
Forschungszentrum Karlsruhe, Techniqk und Umwelt, Institut for Festkorperforschung, Hermann-von-Helmholtz-Platz-1, D-7634 Eggenstein-Leopoldshafen, Germany
B. deBoer
Affiliation:
Institut für Festkörper- und Werkstofforschung, D-01171 Dresden, Germany
B. Holzapfel
Affiliation:
Institut für Festkörper- und Werkstofforschung, D-01171 Dresden, Germany
J.L. MacManus-Driscoll
Affiliation:
Department of Materials, Imperial College, Prince Consort Road, London, SW7 2BP, United Kingdom
Get access

Abstract

The growth of nickel oxide (NiO) on {100}〈001〉 cube textured, rolling-assisted biaxially textured substrates (RABiTS) of pure nickel was studied. Single-phase (100) NiO formed only in a narrow temperature range at 1250 ± 5 °C. At lower or higher temperatures, other orientations, namely (111), (311), and (220), also formed. At 1250 °C, practically single phase (100) NiO was observed for short oxidation times t of 0.2–10 min (oxide thickness < 10 μm). For 10 < t < 120 min, small quantities of (111) NiO formed in addition to (100), but near-single-phase (100) NiO formed once again after oxidation for >150 min (thickness > 35 μm). The ratio of (100) to (111) textures with oxidation time is explained in terms of epitaxial constraints, growth rates, and oxygen absorption on the (100) and (111) grains. The optimum oxidation conditions are oxidation for approximately 0.5 min at 1250 °C in flowing oxygen, yielding (100) NiO, a few microns in thickness, and root-mean-square roughness of approximately 40 nm on the length-scale of the grain size.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Groves, J.R., Arendt, P.N., Foltyn, S. R., Jia, Q.X., Holesinger, T.G., Kung, H., Peterson, E.J., DePaula, R.F., Dowden, P.C., Stan, L., and Emmert, L.A., J. Mater. Res. 16, 2175 (2001).CrossRefGoogle Scholar
Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hartfield, E., Sikka, V.K., Appl. Phys. Lett. 69, 1795 (1996).CrossRefGoogle Scholar
Goyal, A., Lee, D.F., List, F.A., Specht, E.D., Feenstra, R., Paranthaman, M., Cui, X., Lu, S.W., Martin, P.M., Kroeger, D.M., Christen, D.K., Kang, B.W., Norton, D.P., Park, C., Verebelyi, D.T., Thompson, J.R., Williams, R.K., Aytug, T., Cantoni, C., Physica C 357, 903 (2001).CrossRefGoogle Scholar
Ginsbach, A., Adrian, G., Schiender, R., Grueninger, H.W., and Grabe, G., IEEE Trans. Magn. 27, 1410 (1991); A. Ginsbach, G. Adrian, R. Schiender, G. Schultz, and H.W. Grueninger, Physica C, 185–189, 2111 (1992).CrossRefGoogle Scholar
Liu, C.F., Wu, X., Wang, F.Y., Yang, Z.J., Feng, Y., Wu, X.Z., and Zhou, L., IEEE Trans. Appl. Supercond. 9, 1471 (1999).CrossRefGoogle Scholar
Matsumoto, K., Kim, S., Wen, J-G., Hirabayashi, I., Watanabe, T., Uno, N., Ikeda, M., IEEE Trans. Appl. Supercond. 9, 1539 (1999).CrossRefGoogle Scholar
Matsumoto, K., Niiori, Y., Hirabayashi, I., Koshizuki, N., Watanabe, T., Tanaka, Y., Ikeda, M., in New Fabrication Method of High-Jc YBa2Cu3O7 Superconducting Films on Flexible Metallic Substrates, edited by Osamura, K., Hirabayashi, I. (Springer, Tokyo, Japan, 1998), p. 611.Google Scholar
Matsumoto, K., Kim, S., Yamagiwa, K., Kioke, Y., Hirabayashi, I., Watanabe, T., Uno, N., and Ikeda, M., Physica C 335, 39 (2000).CrossRefGoogle Scholar
Matsumoto, K., Watanabe, T., Tanigawa, T., Maeda, T., Kim, S., and Hirabayashi, I., IEEE Trans. Appl. Supercond. 11, 3138 (2001).CrossRefGoogle Scholar
Qi, X., Perkins, G., Caplin, A.D., and MacManus-Driscoll, J.L., IEEE Trans. Appl. Supercond. 11, 2897 (2001).CrossRefGoogle Scholar
Qi, X., Soorie, M., Lockman, Z., and MacManus-Driscoll, J.L., J. Mater. Res. 17, 1 (2002).CrossRefGoogle Scholar
Qi, X., Soorie, M., Lockman, Z., and MacManus-Driscoll, J.L., Physica C 375–376, 742 (2002).CrossRefGoogle Scholar
Giggins, C.S. and Pettit, F.S., Trans. Metall. Soc. AIME. 245, 2495 (1969).Google Scholar
Li, H., Czerwinski, F., Zhilyaev, A., and Szpunar, J.A., Corrosion Sci. 39, 1211 (1997).CrossRefGoogle Scholar
Czerwinski, C., and Szpunar, J.A., J. Mater. Sci. 33, 5463 (1998).CrossRefGoogle Scholar
Baur, J.P., Bartlett, R.W., Ong, J.N., Jr, and Fassell, W.M., J. of Electrochem. Soc. 110, 185 (1963).CrossRefGoogle Scholar
Saiki, R.S., Kaduwela, A.P., Osterwalder, J., Fadley, C., and Brundel, C.R., Phys. Rev. B 40, 1586 (1989).CrossRefGoogle Scholar
Cathart, J.V., Patersen, G.F., and Sparks, C.J., Jr., J. Electrochem. Soc. 116, 664 (1969).CrossRefGoogle Scholar
Khoi, N.N., Smeltzer, W.W., and Embury, J.D., J. Electrochem. Soc. 122, 1495 (1975).CrossRefGoogle Scholar
Pieraggi, B., Rapp, R., and Hirth, J.P., Oxid. Metals 40, 63 (1988).Google Scholar
Kofstad, P., High Temperature Corrosion pp. (Elsevier Appl. Science, New York, 1988), pp. 133161.Google Scholar
Lockman, Z., Goldacker, W., Nast, R., Boer, B. de, and MacManus-Driscoll, J.L., Physica C 372–376, 831 (2002).CrossRefGoogle Scholar
Goldacker, W. and Nast, R. (private communication).Google Scholar
Boer, B. de, Reger, N., Fernandez, L., Eickemeyerm, J., Holzapfel, B., Schultz, L., Prusseit, W., and Berberich, P., Physica C 351, 38 (2001).CrossRefGoogle Scholar
Lockman, Z., Qi, X., Berenov, A., Nast, R., Goldacker, W., and MacManus-Driscoll, J.L., Physica C 351, 34 (2001).CrossRefGoogle Scholar
Atkinson, H., Ph.D. Thesis, Imperial College London, London, U.K. (1986)Google Scholar
Douglass, D.L., Corrosion Sci. 8, 665 (1968).CrossRefGoogle Scholar
Monceau, D., Peraldi, R., and Pieraggi, B., Defect Diffusion Forum 194–199, 1675 (2001).CrossRefGoogle Scholar
Rosa, C.J., Corrosion Sci. 22, 1081 (1982).CrossRefGoogle Scholar
Donet, S., Weiss, F., Sénateur, J.P., Chaudouet, P., Abrutis, A., Teiserskis, A., Saltyte, Z., Selbmann, D., Eickemeyer, J., Stadel, O., Wahl, G., Jimenez, C., and Miller, U., Physica C 372–376, 652 (2002).CrossRefGoogle Scholar
Nast, R., Obst, B., and Goldacker, W., Physica C 372–376, 733 (2002).CrossRefGoogle Scholar
Tinker, M. and Labun, P.A., Oxid. Metals 18, 27 (1982).CrossRefGoogle Scholar
Lockman, Z., Qi, X., Berenov, A., Goldacker, W., Nast, R., deBoer, B., Holzapfel, B., MacManus-Driscoll, J. L., Physica C 383, 127 (2002).CrossRefGoogle Scholar
Watanabe, T., Matsumoto, K., Tanigawa, T., Maeda, T., and Hirabayashi, I., IEEE Trans. Appl. Supercond. 111, 3134 (2001).CrossRefGoogle Scholar