Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T23:54:59.210Z Has data issue: false hasContentIssue false

Synthesis and characterization of nanocrystalline MgAlxFe2−xO4 ferrites

Published online by Cambridge University Press:  28 September 2012

Hesham Mohamed Zaki*
Affiliation:
Department of Physics, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt; and Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
Saleh Al-Heniti
Affiliation:
Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
*
a)Address all correspondence to this author. e-mail: dakdik2001@yahoo.com, hesham_zaki@zu.edu.eg
Get access

Abstract

The structural and magnetic properties of the Al cosubstituted cubic spinel ferrite series MgAlxFe2−xO4 (x = 0.0, 0.4, 0.8, and 1.0) synthesized through a coprecipitation method were characterized by means of x-ray powder diffraction, infrared (IR) spectroscopy, transmission electron microscopy (TEM), differential thermal analyses, and vibrating sample magnetometer. Lattice constants determined from x-ray diffraction (XRD) measurements exhibit a decrease with increasing Al3+ ions in the ferrites system. The particle size using TEM was ∼33 nm for magnesium ferrite, which is in good agreement with values obtained by XRD method. The crystallization spinel formation for the parent ferrite MgFe2O4 using differential thermal analysis (DTA) technique was 454 °C. The two main bands observed in the IR spectra (tetrahedral and octahedral) were in the range (568–628 cm−1) and (431–460 cm−1), respectively. Magnetization curve shows the highest value for the sample with concentration x = 0.4.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Willey, R.J., Noirclerc, P., and Busca, G.: Preparation and characterization of magnesium chromite and magnesium ferrite aero gels. Chem. Eng. Commun. 123, 1 (1993).CrossRefGoogle Scholar
Maensiri, S., Sangmanee, M., and Wiengmoon, A.: Magnesium ferrite (MgFe2O4) nanostructures fabricated by electrospinning. Nanoscale Res. Lett. 4, 221 (2009).CrossRefGoogle Scholar
Paik, J.G., Lee, M.J., and Hyun, S.H.: Reaction kinetics and formation mechanism of magnesium ferrites. Thermochim. Acta 425, 131 (2005)CrossRefGoogle Scholar
Maehera, T., Konishi, K., Kamimori, T., Aono, H., Naohara, T., Kikkawa, H., Watanable, Y., and Kawachi, K.: Heating of ferrite powder by an AC magnetic field for local hyperthermia. Jpn. J. Appl. Phys. 41, 1620 (2002)CrossRefGoogle Scholar
Knock, H. and Dannheim, H.: Temperature dependence of the cation distribution in magnesium ferrite. Phys. Status Solidi A A37, K135 (1976).CrossRefGoogle Scholar
De Grave, E., Dauve, C., Govarert, A., and Siller, J.D.: Cation distribution and magnetic exchange interactions in MgFe2O4 studied by the Mössbauer effect. Phys. Status Solidi B 73, 527 (1976).CrossRefGoogle Scholar
Schmocaer, U., Boesch, H.R., and Waidner, F.: A direct determination of cation disorder in MgAl2O4 spinel by ESR. Phys. Lett. 40A, 237 (1972).CrossRefGoogle Scholar
Bara, J.J., Pedziwiatr, A.T., Standnik, Z.M., Szytwa, A., Todorovic, J., Tomokowicz, Z., and Zarek, W.: Investigations of crystal and magnetic properties of nickel ferrite-aluminates. Phys. Status Solidi A 44, 325 (1977).CrossRefGoogle Scholar
Razik, N.A.: Precise lattice constants determination of cubic crystals from x-ray powder diffractometric measurements. Appl. Phys. A A37, 187 (1985).CrossRefGoogle Scholar
Ohnishi, H. and Teranishi, T.: Crystal distortion in copper ferrite-chromite series. J. Phys. Soc. Jpn. 16, 35 (1961).CrossRefGoogle Scholar
Zaki, H.M. and Mansour, S.F.: X-ray and Ir analysis of Cu-Si ferrite. J. Phys. Chem. Solids. 67, 1643 (2006).CrossRefGoogle Scholar
Candeia, R.A., Souza, M.A.F., Bernardi, M.I.B., Maestrelli, S.C., Santos, I.M.G., Souza, A.G., and Longo, E.: MgFe2O4 pigment obtained at low temperature. Mater. Res. Bull. 41, 183 (2006).CrossRefGoogle Scholar
Hankare, P.P., Vader, V.T., Patil, N.M., Jadhav, S.D., Sankpala, U.B., Kadam, M.R., Chougule, B.K., and Gajbhiye, N.S.: Synthesis, characterization studies magnetic electrical properties Mg ferrite Cr substitution. Mater. Chem. Phys. 113, 233 (2009)CrossRefGoogle Scholar
Bratton, R.J.: Co-precipitates yielding MgAl2O4 spinel powders. Am. Ceram. Soc. Bull. 48, 759 (1969).Google Scholar
Shiono, T., Shiono, K., Miyamoto, K., and Pezzotti, G.: Synthesis and characterization of MgAl2O4 spinel precursor from a heterogeneous alkoxide solution containing fine MgO powder. J. Am. Ceram. Soc. 83(1), 235237 (2000).CrossRefGoogle Scholar
Ma, N., Yue, Y., Hua, W., and Gao, Z.: Selective oxidation of styrene over nanosized spinel-type MgxFe3−xO4 complex oxide catalysts. Appl. Catal., A 251, 3947 (2003).CrossRefGoogle Scholar
Purushotham, Y., Reddy, V.D., Sagar, D.R., Kishan, P., and Venugopal Reddy, P.: Thermopower and electrical conductivity of titanium substituted magnesium ferrites. Phys. Status Solidi A 140. K89 (1993).CrossRefGoogle Scholar
Ladgaonkar, B.P., Vasambekar, P.N., and Vaingankar, A.S.: Structural and DC electrical resistivity study of Nd substituted Zn Mg ferrites. J. Mater. Sci. Lett. 19, 1375 (2000).CrossRefGoogle Scholar
Waldron, R.D.: Infrared spectra ferrites. Phys. Rev. 99, 1727 (1955).CrossRefGoogle Scholar
Gillot, B., Bouton, F., and Ferriot, J.F.: Infrared investigation of aluminum- and chromium-substituted magnetites and of the lacunar spinels resulting from their oxidation. J. Solid State Chem. 21, 375 (1977).CrossRefGoogle Scholar
Giri, J., Sriharsha, T., Asthana, S., Gundu Rao, T.K., Nigam, A.K., and Bahadur, D.: Synthesis of capped nano sized Mn1-xZnxFe2O4, (0 ≤ x ≤ 0.8) by microwave refluxing for bio-medical applications. J. Magn. Magn. Mater. 293, 55 (2005).CrossRefGoogle Scholar
Deraz, N.M.: Production and characterization of pure and doped copper ferrite nanoparticles. J. Anal. Appl. Pyrolysis 82, 212 (2008).CrossRefGoogle Scholar
Jani, N.N., Trivedi, B.S., Joshiand, H.H., and Kulkarni, R.G.: Magnetic properties of the mixed spinel Mg1+xMnxFe2-2xO4. Hyperfine Interact. 110, 227 (1997).CrossRefGoogle Scholar
Chhaya, U.V., Trivedi, B.S., and Kulkarni, R.G.: Magnetic properties of the mixed spinel NiAl2xCrxFe2−3xO4. Physica B 262, 5 (1999).CrossRefGoogle Scholar
Van Uitert, L.G.: Low magnetic saturation ferrites for microwave applications. J. Appl. Phys. 26, 1289 (1955).CrossRefGoogle Scholar