Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-15T02:18:55.270Z Has data issue: false hasContentIssue false

Synthesis and characterization of nanocrystalline tungsten oxide nanosheets in large scale

Published online by Cambridge University Press:  31 January 2011

Huasheng Wu*
Affiliation:
Physics Department and the University of Hong Kong—Chinese Academy of Sciences (HKU-CAS) Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong, Peoples Republic of China
Kunquan Hong
Affiliation:
Physics Department and the University of Hong Kong—Chinese Academy of Sciences (HKU-CAS) Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong, Peoples Republic of China
*
a) Address all correspondence to this author. e-mail: hswu@hkusub.hku.hk
Get access

Abstract

A high quantity of tungsten oxide nanosheets were synthesized by oxidizing tungsten plates with potassium hydrate as the catalyst and tungsten plate as the substrate. The structural and geometrical properties were characterized by various techniques. It was found that the crystalline nanosheets have a WO3 structure with thicknesses of 30–50 nm and widths up to tens of micrometers. There exist two characteristic acute angles of about 37° or 51° on the nanosheet plane. The formation of these angles and the growth mechanism were discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Aird, A., Salje, E.K.H.: Sheet superconductivity in twin walls: Experimental evidence of WO3–x. J. Phys. Condens. Matter 10, L377 1998CrossRefGoogle Scholar
2.Bohnke, O., Rezarzi, M., Vuillemin, B., Bohnke, C., Gillet, P.A., Rousselot, C.: In situ optical and electrochemical characterization of electrochromic phenomena into tungsten trioxide thin-films. Sol. Energy Mater. Sol. Cells 25, 361 1992CrossRefGoogle Scholar
3.Solis, J.L., Saukko, S., Kish, L., Granqvist, C.G., Lantto, V.: Semiconductor gas sensors based on nanostructured tungsten oxide. Thin Solid Films 391, 255 2001CrossRefGoogle Scholar
4.Sayama, K., Mukasa, K., Abe, R., Abe, Y., Arakawa, H.: Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3-/I- shuttle redox mediator under visible light irradiation. Chem. Commun. (Camb.) 2416 2001CrossRefGoogle Scholar
5.Lee, K., Seo, W.S., Park, J.T.: Synthesis and optical properties of colloidal tungsten oxide nanorods. J. Am. Chem. Soc. 125, 3408 2003CrossRefGoogle ScholarPubMed
6.Liu, Z.W., Bando, Y., Tang, C.C.: Synthesis of tungsten oxide nanowires. Chem. Phys. Lett. 372, 179 2003CrossRefGoogle Scholar
7.Liao, C.C., Chen, F.R., Kai, J.J.: WO3–x nanowires based electrochromic devices. Sol. Energy Mater. Sol. Cells 90, 1147 2006CrossRefGoogle Scholar
8.Dillon, A.C., Mahan, A.H., Deshpande, R., Alleman, J.L., Blackburn, J.L., Parillia, P.A., Heben, M.J., Engtrakul, C., Gilbert, K.E.H., Jones, K.M., To, R., Lee, S-H., Lehman, J.H.: Hot-wire chemical vapor synthesis for a variety of nano-materials with novel applications. Thin Solid Films 501, 216 2006CrossRefGoogle Scholar
9.Li, Y.B., Bando, Y., Golberg, D.: Quasi-aligned single-crystalline W18O49 nanotubes and nanowires. Adv. Mater. 15, 1294 2003CrossRefGoogle Scholar
10.Zhao, Y.M., Li, Y.H., Ahmad, I., McCartney, D.G., Zhu, Y.Q., Hu, W.B.: Two-dimensional tungsten oxide nanowire networks. Appl. Phys. Lett. 89, 133116 2006CrossRefGoogle Scholar
11.Qi, H., Wang, C.Y., Liu, J.: A simple method for the synthesis of highly oriented potassium-doped tungsten oxide nanowires. Adv. Mater. 15, 411 2003CrossRefGoogle Scholar
12.Hu, R., Wu, H.S., Hong, K.Q.: Growth of uniform tungsten oxide nanowires with small diameter via a two-step heating process. J. Cryst. Growth 306, 395 2007CrossRefGoogle Scholar
13.Zhang, B., Liu, J.D., Guan, S.K., Wan, Y.Z., Zhang, Y.Z., Chen, R.F.: Synthesis of single-crystalline potassium-doped tungsten oxide nanosheets as high-sensitive gas sensors. J. Alloys Compd. 439, 55 2007CrossRefGoogle Scholar
14.Hong, K.Q., Yiu, W.C., Wu, H.S., Gao, J., Xie, M.H.: A simple method for growing high quantity tungsten-oxide nanoribbons under moist conditions. Nanotechnology 16, 1608 2005CrossRefGoogle Scholar
15.Hong, K.Q., Xie, M.H., Hu, R., Wu, H.S.: Synthesis of potassium tungstate micro-walls by thermal evaporation. J. Cryst. Growth 295, 75 2006CrossRefGoogle Scholar
16.Baserga, A., Russo, V., Di Fonzo, F., Bailini, A., Cattaneo, D., Casari, C.S., Li Bassi, A., Bottani, C.E.: Nanostructured tungsten oxide with controlled properties: Synthesis and Raman characterization. Thin Solid Films 515, 6465 2007CrossRefGoogle Scholar
17.Wagner, R.S., Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 1964CrossRefGoogle Scholar
18.Wu, Y.Y., Yang, P.D.: Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123, 3165 2001CrossRefGoogle Scholar