Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T15:15:59.321Z Has data issue: false hasContentIssue false

Synthesis and design of PSf/TiO2 composite membranes for reduction of chromium (VI): Stability and reuse of the product and the process

Published online by Cambridge University Press:  24 July 2014

M.S. Jyothi
Affiliation:
Catalysis Division, Center for Nano and Material Sciences, Jain University, Ramanagaram, Bangalore 562112, India
Mahesh Padaki*
Affiliation:
Catalysis Division, Center for Nano and Material Sciences, Jain University, Ramanagaram, Bangalore 562112, India
R. Geetha Balakrishna*
Affiliation:
Catalysis Division, Center for Nano and Material Sciences, Jain University, Ramanagaram, Bangalore 562112, India
Ranjith Krishna Pai
Affiliation:
Catalysis Division, Center for Nano and Material Sciences, Jain University, Ramanagaram, Bangalore 562112, India
*
a)Address all correspondence to these authors. e-mail: sp.mahesh@jainuniversity.ac.in
Get access

Abstract

The study demonstrates the 100% repeated recyclability of hybrid membranes without any pretreatment. Composite membranes designed with titanium dioxide (TiO2) nanoparticles (NPs) and polysulfone (PSf) membranes were used for reduction of chromium (Cr) (VI) to Cr (III) under sunlight. Different concentrations of TiO2 NPs varying from 1.5% to 2.5% with the difference of 0.5% were incorporated into the membrane matrix. Increase in weight percentage of TiO2 particles enhances the reduction to 100% within 2.5 h with an increase in recyclable capacity as well. The effect of recycling on the surface of the membrane was studied using x-ray diffraction (XRD), scanning electron microscope (SEM), and atomic force microscopy (AFM). The observations in general indicate an increase in roughness without affecting the catalytic efficiency up to six recycles. The study on surface membrane morphology and catalytic efficiency with reusability opens a scope for a feasible economical chromium reduction via a membrane process. Macro and micro structure of the membrane before reduction and after recycling were studied and compared with scientific evidence. Based on the results, the kinetic model was proposed for the reduction reactions.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bhattacharyya, D., Schafer, T., Wickramasinghe, S.R., and Daunert, S.: Responsive Membranes and Materials (John Wiley & Sons, Ltd., Hoboken, NJ, 2013).Google Scholar
Mathias, U.: Feature article advanced functional polymer membranes. Polymer 47, 2217 (2006).Google Scholar
Rengaran, S., Venkataraj, S., Yeon, J-W., Kim, Y., Li, X.Z., and Pang, G.K.H.: Preparation, characterization and application of Nd-TiO2 photocatalyst for reduction of Cr (VI) under UV-light illumination. Appl. Catal., B 77, 157 (2007).Google Scholar
Mohapatra, P., Samantaray, S.K., and Parida, K.: Photocatalytic reduction of hexavalent chromium in aqueous solution over sulphate modified titania. J. Photochem. Photobiol., A 170, 189 (2005).Google Scholar
Testa, J.J., Grela, M.A., and Litter, M.I.: Experimental evidence in favor of an initial one-electron transfer process in the heterogeneous photocatalytic reduction of chromium (CI) over TiO2 . Langmuir 17, 3515 (2001).Google Scholar
Skubal, L.R., Meshkov, N.K., Rajh, T., and Thurnauer, M.: Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles. J. Photochem. Photobiol., A 148, 393 (2002).Google Scholar
Rafati, L., Mahvi, A.H., Argari, A.R., and Hosseini, S.S.: Removal of chromium (VI) from aqueous solutions using Lewatit FO 36 nano ion exchange resin. Int. J. Environ. Sci. Technol. 7(1), 147 (2010).Google Scholar
Hari Haran, A.V.L.N.S.H., and Marali Krishna, D.: Solvent extraction of chromium (VI) from mineral acid solutions by tributyl amine. Int. J. Pharma Bio Sci. 2, 1 (2010).Google Scholar
Marches, M., Gangneten, A.M., Parma, M.J., and Rave, P.J.: Accumulation and elimination of chromium by freshwater species exposed to spiked sediments. Arch. Environ. Contam. Toxicol. 55(1), 603 (2008).Google Scholar
Zheng, Y., Wang, W., Huang, D., and Wang, A.: Kopak fiber oriented-polyaniline nanofibers for efficient Cr (VI) removal. Chem. Eng. J. 191, 154 (2012).Google Scholar
Hu, J., Chen, G., and Lo, I.M.C.: Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Res. 39, 4528 (2005).CrossRefGoogle ScholarPubMed
Garcia Rodenas, L.A., Weisz, A.D., Magaz, G.E., and Blesa, M.A.: Effect of light on the electro kinetic behavior of TiO2 particles in contact with Cr (VI) aqueous solution. J. Colloid Interface Sci. 230, 181 (2000).Google Scholar
Spanos, N., Georgiadou, I., and Lycourghiotis, A.: Investigation of rutile, anatase, and industrial titania/water solution interfaces using potentiometric titration and microelectrophoresis. J. Colloid Interface Sci. 172, 374 (1995).Google Scholar
Nakamura, T., Ichitsubo, T., Matsubara, E., Muramatsu, A., Sato, N., and Takahashi, H.: Preferential formation of anatase in laser-ablated titanium dioxide films. Acta Mater. 53, 323 (2005).Google Scholar
Tobaldi, D.M., Pullar, R.C., Gualtieri, A.F., Seabra, M.P., and Labrincha, J.A.: Phase composition, crystal structure and microstructure of silver and tungsten doped TiO2 nanopowders with tuneable photochromic behavior. Acta Mater. 61, 5571 (2013).Google Scholar
Feng, X., Wang, X., Chen, X., and Yue, Y.: Thermo-physical properties of thin films composed of anatase TiO2 nanofibers. Acta Mater. 59, 1934 (2011).Google Scholar
Kulczyk-Malecka, J., Kelly, P.J., West, G., Clarke, G.C.B., Ridealgh, J.A., Almtoft, K.P., Greer, A.L., and Barber, Z.H.: Investigation of silver diffusion in TiO2/Ag/TiO2 coatings. Acta Mater. 66, 393 (2014).Google Scholar
Kim, J.Y., Mulmi, S., Lee, C.H., Park, H.B., Chung, Y.S., and Lee, Y.M.: Preparation of organic-inorganic nanocomposite membrane using a reactive polymeric dispersant and compatibilizer: Proton and methanol transport with respect to nano-phase separated structure. J. Membr. Sci. 283, 172 (2006).Google Scholar
Sayo, K., Deki, S., and Hayashi, S.: Supported gold catalyst prepared by using nano-sized gold particles dispersed in nylon-11 oligomer. J. Mater. Chem. 9, 937 (1999).Google Scholar
Cao, X., Ma, J., Shi, X., and Ren, Z.: Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl. Surf. Sci. 253, 2003 (2006).Google Scholar
Teow, Y.H., Ahmad, A.L., Lim, J.K., and Ooi, B.S.: Preparation and characterization of PVDF/TiO2 mixed matrix membrane via in situ colloidal precipitation method. Desalination 295, 61 (2012).Google Scholar
Yang, Y. and Wang, P.: Preparation and characterizations of a new PSf/TiO2 hybrid membranes by sol-gel process. Polymer 47, 2683 (2006).Google Scholar
Yang, Y.N., Zhang, H.X., Wang, P., and Zheng, Q.Z.: The influence of nano-sized TiO2 fillers on the morphologies and properties of PSf UF membrane. J. Membr. Sci. 276, 231 (2007).CrossRefGoogle Scholar
Emadzadeh, D., Lau, W.J., Matsuura, T., Rahbari-Sisakht, M., and Ismail, A.F.: A novel thin film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination. Chem. Eng. J. 237, 70 (2014).Google Scholar
Hamid, N.A.A., Ismail, A.F., Matsuura, T., Zularisam, A.W., Lau, W.J., Yuliwati, E., and Abdullah, M.S.: Morphological and separation performance study of polysulfone/titanium dioxide (PSF/TiO2) ultrafiltration membranes for humic acid removal. Desalination 273(1), 85 (2011).Google Scholar
Yang, Y-N., Jun, Wu, Zheng, Q-Z., Chen, X.-S., and Zhang, H-X.: The research of rheology and thermodynamics of organic–inorganic hybrid membrane during the membrane formation. J. Membr. Sci. 311(1–2), 200 (2008).Google Scholar
Swetha, S., Singh, M.K., Minchitha, K.U., and Geetha Balakrishna, R.: Elucidation of cell killing mechanism by comparative analysis of photoreactions on different types of bacteria. Photobiology 88, 414 (2012).Google Scholar
Padaki, M., Isloor, A.M., Fernandes, J., and Narayan Prabhu, K.: New polypropylene supported chitosan NF-membrane for desalination application. Desalination 280, 419 (2011).Google Scholar
Mytych, P., Ciesla, P., and Stasicka, Z.: Photoredox processes in the Cr (VI)-Cr(III)-oxolate system and their environmental relevance. Appl. Catal., B 59, 161 (2005).Google Scholar
Sahu, N. and Parida, K.M.: Visible light induced photocatalytic activity of rare earth titania nanocomposites. J. Mol. Catal. A. Chem. 287, 151 (2008).Google Scholar
Zmudzinski, W., Sobczynska, A., and Sobczynski, A.: Oxidation of phenol and hexanol in their binary mixtures on illuminated titania: Kinetic studies. React. Kinet. Catal. Lett. 90, 293 (2007).Google Scholar
Pettine, M., Campanella, L., and Millero, F.: Reduction of hexavalent chromium by H2O2 in acidic solutions. Environ. Sci. Technol. 36, 901 (2002).Google Scholar
Jian, D., Xu, T., Hou, B., Wu, D., and Sun, Y.: Synthesis of visible light-activated TiO2 photocatalyst via surface organic modification. J. Solid State Chem. 180, 1787 (2007).Google Scholar
Mollahosseini, A. and Rahimpour, A.: Interfacially polymerized thin film nanofiltration membranes on TiO2 coated polysulfone substrate. J. Ind. Eng. Chem. 20, 1261 (2013).Google Scholar
Adris, A., Hassan, N., Rashid, R., and Ngomsik, A-F.: Kinetic and regeneration studies of photocatalytic magnetic separable beads for chromium (VI) reduction under sunlight. J. Hazard. Mater. 186, 629 (2011).Google Scholar
Sobczynski, A., Duczmal, L., and Zmudzinski, W.: Phenol destruction by photocatalysis on TiO2: An attempt to solve the reaction mechanism. J. Mol. Catal. A: Chem. 213, 225 (2004).Google Scholar
Geetha Balakrishna, R. and Gomathi Devi, L.: A study of photocatalytic oxidation of indanthrene red LGG an anthraquinone vat dye on TiO2 . Pol. J. Chem. 79, 919 (2005).Google Scholar