Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T13:54:58.682Z Has data issue: false hasContentIssue false

Synthesis and higher catalytic property of the novel bimetallic Ni–Fe/SiO2 microspheres with mesoporous structure

Published online by Cambridge University Press:  07 February 2017

Xinzhi Sun
Affiliation:
College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao 266109, China; and Key Laboratory of Nanostructured Materials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Fanglin Du*
Affiliation:
Key Laboratory of Nanostructured Materials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
*
a) Address all correspondence to this author. e-mail: dufanglin@qust.edu.cn
Get access

Abstract

Bimetallic catalyst Ni–Fe/SiO2 microspheres were obtained by reducing bimetallic (Ni,Fe2+)3Si2O5(OH)4 microspheres with controllable morphology structure in situ under the hydrogen atmosphere at 650 °C, which are synthesized via one-step self-template method under hydrothermal conditions. The TEM images indicate the formation process of the different morphology and the synthesis conditions of bimetallic Ni–Fe silicate were obtained. Bimetallic catalyst Ni–Fe/SiO2 (reduced) hollow microspheres had the smaller surface area and the bigger pore diameter than that of (Ni,Fe2+)3Si2O5(OH)4 (unreduced) hollow microspheres because the reduction reaction under high temperature may make part pores in nanosheets collapsing and metal particles aggregating easily for the strong magnetism. For synergistic effect of nickel ion and iron ion, the reaction conditions of the chosen catalyst with higher activity were decreased from 140 °C–24 h + 180 °C −12 h for iron silicate hydroxide to 140 °C–12 h. Ni–Fe/SiO2 core-shell microspheres exhibited excellent catalytic activity with a conversion of nitrobenzene reaching 94% within 2 h, which is 82% higher than Fe/SiO2.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Akira Nakajima

References

REFERENCES

Downing, R.S., Kunkeler, P.J., and Bekkum, H.V.: Catalytic syntheses of aromatic amines. Catal. Today 37(2), 121 (1997).Google Scholar
Blaser, H.U.: A golden boost to an old reaction. Chemistry 313(5785), 312 (2006).Google Scholar
Corma, A., Concepcion, P., and Serna, P.: Cover picture: A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew. Chem., Int. Ed. 46(38), 7404 (2007).CrossRefGoogle Scholar
Meng, X.C., Cheng, H.Y., Akiyama, Y., Hao, Y.F., Qiao, W.B., Yu, Y.C., Zhao, F.Y., Fujita, S.I., and Arai, M.: Selective hydrogenation of nitrobenzene to aniline in dense phase carbon dioxide over Ni/γ-Al2O3: Significance of molecular interactions. J. Catal. 264(1), 1 (2009).Google Scholar
Holler, V., Wegricht, D., Yuranov, I., Minsker, L., and Renken, A.: Three-phase nitrobenzene hydrogenation over supported glass fiber catalysts: Reaction kinetics study. Chem. Eng. Technol. 23(3), 251 (2000).Google Scholar
Corma, A., Serna, P., Concepcion, P., and Calvino, J.: Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. J. Am. Chem. Soc. 130(27), 8748 (2008).Google Scholar
Diao, S., Qian, W., Luo, G., Wei, F., and Wang, Y.: Gaseous catalytic hydrogenation of nitrobenzene to aniline in a two-stage fluidized bed reactor. Appl. Catal., A 286(1), 30 (2005).CrossRefGoogle Scholar
Li, B. and Xu, Z.: A nonmetal catalyst for molecular hydrogen activation with comparable catalytic hydrogenation capability to noble metal catalyst. J. Am. Chem. Soc. 131(45), 16380 (2009).Google Scholar
Macías Pérez, M.C., Salinas Martínez de Lecea, C., and Linares Solano, A.: Platinum supported on activated carbon cloths as catalyst for nitrobenzene hydrogenation. Appl. Catal., A 151(2), 461 (1997).CrossRefGoogle Scholar
Burge, H.D., Collins, D.J., and Davis, B.H.: Intermediates in the Raney nickel catalyzed hydrogenation of nitrobenzene to aniline. Ind. Eng. Chem. Prod. Res. Dev. 19(3), 389 (1980).Google Scholar
Li, H., Zhao, Q., Wan, Y., Dai, W., and Qiao, M.: Self-assembly of mesoporous Ni–B amorphous alloy catalysts. J. Catal. 244(2), 251 (2006).CrossRefGoogle Scholar
Lee, S. and Chen, Y.: Nitrobenzene hydrogenation on Ni–P, Ni–B and Ni–P–B ultrafine materials. J. Mol. Catal. A: Chem. 152(1–2), 213 (2000).Google Scholar
Zheng, Y., Ma, K., Wang, H., Sun, X., Jiang, J., Wang, C., Li, R., and Ma, J.: A green reduction of aromatic nitro compounds to aromatic amines over a novel Ni/SiO2 catalyst passivated with a gas mixture. Catal. Lett. 124(3), 268 (2008).Google Scholar
Xu, R., Xie, T., Zhao, Y.G., and Li, Y.: Quasi-homogeneous catalytic hydrogenation over monodisperse nickel and cobalt nanoparticles. Nanotechnology 18(5), 055602 (2007).Google Scholar
Boudjahem, A.G., Monteverdi, S., Mercy, M., and Bettahar, M.M.: Study of nickel catalysts supported on silica of low surface area and prepared by reduction of nickel acetate in aqueous hydrazine. J. Catal. 221(2), 325 (2004).CrossRefGoogle Scholar
Relvas, J., Andrade, R., Freire, F.G., Lemos, F., Araujo, P., Pinho, M., Nunes, C., and Ribeiro, F.: Liquid phase hydrogenation of nitrobenzene over an industrial Ni/SiO2 supported catalyst. Catal. Today 133–135, 828 (2008).Google Scholar
Wang, J.H., Yuan, Z.L., Nie, R.F., Hou, Z.Y., and Zheng, X.M.: Hydrogenation of nitrobenzene to aniline over silica gel supported nickel catalysts. Ind. Eng. Chem. Res. 49(10), 4664 (2010).Google Scholar
Toshima, N. and Yonezawa, T.: Bimetallic nanoparticles-novel materials for chemical and physical applications. New J. Chem. 22(11), 1179 (1998).Google Scholar
Carrero, A., Calles, J.A., and Vizcaíno, A.J.: Effect of Mg and Ca addition on coke deposition over Cu–Ni/SiO2 catalysts for ethanol steam reforming. Chem. Eng. J. 163(3), 395 (2010).Google Scholar
Park, Y., Kang, T., Cho, Y.S., Kim, P., Park, J.C., and Yi, J.: Finely-dispersed Ni/Cu catalysts supported on mesoporous silica for the hydrodechlorination of chlorinated hydrocarbons. Stud. Surf. Sci. Catal. 146, 637 (2003).Google Scholar
Vizcaino, A.J., Carrero, A., and Calles, J.A.: Hydrogen production by ethanol steam reforming over Cu–Ni supported catalysts. Int. J. Hydrogen Energy 32(10–11), 1450 (2007).CrossRefGoogle Scholar
Sietsma, J.R.A., Meeldijk, J.D., Versluijs-Helder, M., Broersma, A., Jos van Dillen, A., de Jongh, P.E., and de Jong, K.P.: Ordered mesoporous silica to study the preparation of Ni/SiO2 ex nitrate catalysts: Impregnation, drying, and thermal treatments. Chem. Mater. 20(9), 2921 (2008).Google Scholar
Takenaka, S., Ogihara, H., and Otsuka, K.: Structural change of Ni species in Ni/SiO2 catalyst during decomposition of methane. J. Catal. 208(1), 54 (2002).Google Scholar
Fang, X.M., Yao, S.L., Qing, Z., and Li, F.Y.: Study on silica supported Cu–Cr–Mo nitrobenzene hydrogenation catalysts. Appl. Catal., A 161(1–2), 129 (1997).Google Scholar
Wang, J.Y., Yang, N.L., Tang, H.J., Dong, Z.H., Jin, Q., Yang, M., Kisailus, D., Zhao, H.J., Tang, Z.Y., and Wang, D.: Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. 125, 6545 (2013).Google Scholar
Guo, Z.Y., Du, F.L., Li, G.C., and Cui, Z.L.: Controlled synthesis of mesoporous SiO2/Ni3Si2O5(OH)4 core–shell microspheres with tunable chamber structures via a self-template method. Chem. Commun. 25, 2911 (2008).Google Scholar
Chen, D.W., Guo, Z.Y., Sun, T., and Du, F.L.: Controlled synthesis and catalytic properties of mesoporous nickel–silica core–shell microspheres with tunable chamber structures. Mater. Res. Bull. 47, 2344 (2012).CrossRefGoogle Scholar
Rong, Q., Long, L.L., Zhang, X., Huang, Y.X., and Yu, H.Q.: Layered cobalt nickel silicate hollow spheres as a highly-stable supercapacitor material. Appl. Energy 153(1), 63 (2015).Google Scholar
Alvarez-Ramírez, F., Toledo-Antonio, J.A., Angeles-Chavez, C., Guerrero-Abreo, J.H., and Lopez-Salinas, E.: Complete structural characterization of Ni3Si2O5(OH)4 Nanotubes: Theoretical and experimental comparison. J. Phys. Chem. C 115(23), 11442 (2011).Google Scholar
Stöber, W. and Fink, A.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26(1), 62 (1968).Google Scholar
Palmer, D.A. and Drummond, S.E.: Thermal decarboxylation of acetate. Part I. The kinetics and mechanism of reaction in aqueous solution. Geochim. Cosmochim. Acta 50(1), 813 (1986).CrossRefGoogle Scholar
Iler, R.K.: The colloid chemistry of silica and silicates. Soil Sci. 80(1), 86 (1955).Google Scholar
Saw, E.T., Oemar, U., Tan, X.R., Du, Y., Borgna, A., Hidajat, K., and Kawi, S.: Bimetallic Ni–Cu catalyst supported on CeO2 for high-temperature water–gas shift reaction: Methane suppression via enhanced CO adsorption. J. Catal. 314, 32 (2014).Google Scholar
Kasrai, M. and Urch, D.S.: Electronic structure of iron(II) and (III) fluorides using X-ray emission and X-ray photoelectron spectroscopies. J. Chem. Soc., Faraday Trans. 2 75, 1522 (1979).Google Scholar
Langevoort, J.C., Sutherland, I., Hanekamp, L.J., and Gellings, P.: On the oxide formation on stainless steels AISI 304 and incoloy 800H investigated with XPS. Appl. Surf. Sci. 28, 167 (1987).Google Scholar
Xu, K., Wang, J.X., Kang, X.L., and Chen, J.F.: Fabrication of antibacterial monodispersed Ag–SiO2 core–shell nanoparticles with high concentration. Mater. Lett. 63, 31 (2009).Google Scholar
Luo, N., Mao, L., Jiang, L., Zhan, J., Wu, Z., and Wu, D.: Directly ultraviolet photochemical deposition of silver nanoparticles on silica spheres: Preparation and characterization. Mater. Lett. 63, 154 (2009).Google Scholar
Wu, Y.H., Chang, G.X., Zhao, Y.B., and Zhan, Y.: Preparation of hollow nickel silicate nanospheres for separation of His-tagged proteins. Dalton Trans. 43, 779 (2014).Google Scholar
Ashok, J., Reddy, P.S., Raju, G., Subrahmanyam, M., and Venugopal, A.: Catalytic decomposition of methane to hydrogen and carbon nanofibers over Ni–Cu–SiO2 Catalysts. Energy Fuels 23(1), 5 (2009).Google Scholar
Zhang, W.H., Quan, X., and Zhang, Z.Y.: Catalytic reductive dechlorination of p-chlorophenol in water using Ni/Fe nanoscale particles. J. Environ. Sci. 19(3), 362 (2007).Google Scholar
Xu, F.Y., Deng, S.B., Xu, J., Zhang, W., Wu, M., Wang, B., Huang, J., and Yu, G.: Highly active and stable Ni–Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol. Environ. Sci. Technol. 46(8), 4576 (2012).Google Scholar
Supplementary material: File

Sun and Du supplementary material

Figures S1-S5

Download Sun and Du supplementary material(File)
File 2.3 MB