Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T02:50:01.107Z Has data issue: false hasContentIssue false

Synthesis and room-temperature ferromagnetism of cobalt-doped SnO2 nanowires

Published online by Cambridge University Press:  31 January 2011

Ke Yu*
Affiliation:
Key Lab for Polar Materials and Devices of Ministry of Education and Department of Electronic Engineering, East China Normal University, Shanghai 200241, People's Republic of China
Yongsheng Zhang
Affiliation:
Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang 471023, People's Republic of China
Ziqiang Zhu
Affiliation:
Key Lab for Polar Materials and Devices of Ministry of Education and Department of Electronic Engineering, East China Normal University, Shanghai 200241, People's Republic of China
*
a) Address all correspondence to this author. e-mail: yk5188@263.net
Get access

Abstract

We have observed ferromagnetism in dilute cobalt-doped SnO2 nanowires at room temperatures. The Co-doped SnO2 nanowires with an average diameter of ∼50 nm were synthesized by the thermal chemical vapor transport method. High-resolution transmission electron microscopy and energy-dispersive x-ray spectroscopy analyses demonstrate that the nanowires are single-crystal structures and Co is homogeneously doped into the SnO2 lattice. The ferromagnetic hysteresis curves and temperature-dependent magnetization measurement provide evidence for ferromagnetic properties with a Curie temperature above room temperature. Oxygen annealing has been performed to study the roles played by the oxygen vacancies in determining the ferromagnetic properties of the nanowires.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Oestreich, M., Hubner, J., Hagele, D., Klar, P.J., Heimbrodt, W., Ruhle, W.W., Ashenford, D.E., and Lunn, B.: Spin injection into semiconductors. Appl. Phys. Lett. 74, 1251 (1999)CrossRefGoogle Scholar
2Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 (2000)CrossRefGoogle ScholarPubMed
3Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., and Koinuma, H.: Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854 (2001)CrossRefGoogle ScholarPubMed
4Park, S.Y., Kim, P.J., Lee, Y.P., Shin, S.W., Kim, T.H., Kang, J.H., and Rhee, J.Y.: Realization of room-temperature ferromagnetism and of improved carrier mobility in Mn-Doped ZnO film by oxygen deficiency, introduced by hydrogen and heat treatments. Adv. Mater. 19, 3496 (2007)CrossRefGoogle Scholar
5Kundaliya, D.C., Ogale, S.B., Lofland, S.E., Dhar, S., Metting, C.J., Shinde, S.R., Ma, Z., Varughese, B., Ramanujachary, K.V., Salamanca-Riba, L., and Venkatesan, T.: On the origin of high-temperature ferromagnetism in the low-temperature processed Mn–Zn–O system. Nat. Mater. 3, 709 (2004)CrossRefGoogle ScholarPubMed
6Pan, D.Y., Wan, J.G., Xu, G.L., Lv, L.Y., Wu, Y.J., Min, H., Liu, J.M., and Wang, G.H.: Room-temperature decay and light reactivation of high-Tc ferromagnetism in an oxide-diluted magnetic semiconductor. J. Am. Chem. Soc. 128, 12608 (2006)CrossRefGoogle Scholar
7Meng, H.J., Hou, D.L., Jia, L.Y., Ye, X.J., Zhou, H.J., and Li, X.L.: Role of oxygen vacancies on ferromagnetism in Fe-doped TiO2thin films. J. Appl. Phys. 102, 073905 (2007)CrossRefGoogle Scholar
8Ogale, S.B., Choudhary, R.J., Buban, J.P., Lofland, S.E., Shinde, S.R., Kale, S.N., Kulkarni, V.N., Higgins, J., Lanci, C., Simpson, J.R., Browning, N.D., Sarma, S. Das, Drew, H.D., Greene, R.L., and Venkatesan, T.: High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2-d. Phys. Rev. Lett. 91, 077205 (2003)CrossRefGoogle Scholar
9J.Coey, M.D., Douvalis, A.P., Fitzgerald, C.B., and Venkatesan, M.: Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett. 84, 1332 (2004)CrossRefGoogle Scholar
10Fitzgerald, C.B., Venkatesan, M., Dorneles, L.S., Gunning, R., Stamenov, P., Coey, J.M.D., Stampe, P.A., Kennedy, R.J., Moreira, E.C., and Sias, U.S.: Magnetism in dilute magnetic oxide thin films based on SnO2. Phys. Rev. B 74, 115307 (2006)CrossRefGoogle Scholar
11Nomura, K., Barrero, C.A., Sakuma, J., and Takeda, M.: Room-temperature ferromagnetism of sol-gel-synthesized Sn1-x 57FexO2-d powders. Phys. Rev. B 75, 184411 (2007)CrossRefGoogle Scholar
12Kimura, H., Fukumura, T., Kawasaki, M., Inaba, K., Hasagawa, T., and Koinuma, H.: Rutile-type oxide-diluted magnetic semiconductor: Mn-doped SnO2. Appl. Phys. Lett. 80, 94 (2002)CrossRefGoogle Scholar
13Nagasawa, M. and Shionoya, S.: Electrical and optical properties of reduced stannic oxide crystals. Jpn. J. Appl. Phys. 10, 472 (1971)CrossRefGoogle Scholar
14Shuai, M., Liao, L., Lu, H.B., Zhang, L., Li, J.C., and Fu, D.J.: Room-temperature ferromagnetism in Cu+ implanted ZnO nano-wires. J. Phys. D: Appl. Phys. 41, 135010 (2008)CrossRefGoogle Scholar
15Chen, I.J., Ou, Y.C., Wu, Z.Y., Chen, F.R., Kai, J.J., Lin, J.J., and Jian, W.B.: Size effects on thermal treatments and room-temperature ferromagnetism in high-vacuum annealed ZnCoO nanowires. J. Phys. Chem. C 112, 9168 (2008)Google Scholar
16Choi, H.J., Seong, H.K., Chang, J., Lee, K.I., Park, Y.J., Kim, J.J., Lee, S.K., He, R., Kuykendall, T., and Yang, P.D.: Single-crystalline diluted magnetic semiconductor GaN:Mn nanowires. Adv. Mater. 17, 1351 (2005)CrossRefGoogle ScholarPubMed
17Philipose, U., Nair, S.V., Trudel, S., Souza, C.F., Aouba, S., Hill, R.H., and Ruda, H.E.: High-temperature ferromagnetism in Mn-doped ZnO nanowires. Appl. Phys. Lett. 88, 263101 (2006)CrossRefGoogle Scholar
18Kang, Y.J., Kim, D.S., Lee, S.H., Park, J., Chang, J., Moon, J.Y., Lee, G., Yoon, J., Jo, Y., and Jung, M.H.: Ferromagnetic Zn1-xMnxO(x=0.05, 0.1, and 0.2) nanowires. J. Phys. Chem. C 111, 14956 (2007)Google Scholar
19Liu, X.F. and Yu, R.H.: Mediation of room temperature ferro-magnetism in Co-doped SnO2 nanocrystalline films by structural defects. J. Appl. Phys. 102, 083917 (2007)CrossRefGoogle Scholar
20Menzel, D., Awada, A., Dierke, H., Schoenes, J., Ludwig, F., and Schilling, M.: Free-carrier compensation in ferromagnetic ion-implanted SnO2:Co. J. Appl. Phys. 103, 07D106 (2008).CrossRefGoogle Scholar
21Hays, J., Punnoose, A., Baldner, R., Engelhard, M.H., Peloquin, J., and Reddy, K.M.: Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles. Phys. Rev. B 72, 075203 (2005)CrossRefGoogle Scholar
22Zuo, Y.L., Ge, S.H., Zhao, Y.X., Zhou, X.Y., Xiao, Y.H., and Zhang, L.: Room temperature ferromagnetism of Sn1[C0]xCoxO2-d films fabricated by sol-gel method. J. Appl. Phys. 104, 023905 (2008)CrossRefGoogle Scholar
23Hu, S.J., Yan, S.S., Yao, X.X., Chen, Y.X., Liu, G.L., and Mei, L.M.: Electronic structure and magnetic properties of Fe0.125Sn0.87502. Phys. Rev. B 75, 094412 (2007)CrossRefGoogle Scholar
24Liu, X.F., Sun, Y., and Yu, R.H.: Role of oxygen vacancies in tuning magnetic properties of Co-doped SnO2 insulating films. J. Appl. Phys. 101, 123907 (2007)CrossRefGoogle Scholar
25Wang, X.L., Dai, Z.X., and Zeng, Z.: Search for ferromagnetism in SnO2 doped with transition metals (V, Mn, Fe, and Co). J. Phys.: Condens. Matter 20, 045214 (2008)Google Scholar
26Wu, Z.Y., Chen, F.R., Kai, J.J., Jian, W.B., and Lin, J.J.: Fabrication, characterization and studies of annealing effects on ferromagnetism in Zn1[C0]x CoxOnanowires. Nanotechnology 17, 5511 (2006)CrossRefGoogle Scholar
27Luo, S.H., Chu, P.K., Liu, W.L., Zhang, M., and Lin, C.L.: Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients. Appl. Phys. Lett. 88, 183112 (2006)CrossRefGoogle Scholar
28Kang, Y.J., Kim, D.S., Lee, S.H., Park, J., Chang, J., Moon, J.Y., Lee, G., Yoon, J., Jo, Y., and Jung, M.: Ferromagnetic Zn1-xMnxO (x = 0.05, 0.1, and 0.2) nanowires. J. Phys. Chem. C 111, 14956 (2007)Google Scholar